BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 4334763)

  • 1. Ribose utilization by Veillonella alcalescens.
    Kafkewitz D; Delwiche EA
    J Bacteriol; 1972 Mar; 109(3):1144-8. PubMed ID: 4334763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonoxidative pentose phosphate pathway in Veillonella alcalescens.
    Michaud RN; Carrow JA; Delwiche EA
    J Bacteriol; 1970 Jan; 101(1):141-4. PubMed ID: 4904232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple impairment of glycolysis in Veillonella alcalescens.
    Michaud RN; Delwiche EA
    J Bacteriol; 1970 Jan; 101(1):138-40. PubMed ID: 5460841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell wall composition and incorporation of radio-labelled compounds by Veillonella alcalescens.
    Winter PF; Delwiche EA
    Can J Microbiol; 1975 Dec; 21(12):2039-47. PubMed ID: 1240789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of D-ribose by Veillonella.
    Kafkewitz D; Delwiche EA
    J Bacteriol; 1969 Jun; 98(3):903-7. PubMed ID: 5788716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of fructose and ribose in lipopolysaccharide synthesis by Veillonella parvula.
    Tortorello ML; Delwiche EA
    Infect Immun; 1983 Jul; 41(1):423-5. PubMed ID: 6408004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the Calvin cycle and hexose monophosphate pathway in Thiobacillus ferrooxidans.
    Gale NL; Beck JV
    J Bacteriol; 1967 Oct; 94(4):1052-9. PubMed ID: 4293079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactate metabolism by Veillonella parvula.
    Ng SK; Hamilton IR
    J Bacteriol; 1971 Mar; 105(3):999-1005. PubMed ID: 4323300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrate reduction and the growth of Veillonella alcalescens.
    Inderlied CB; Delwiche EA
    J Bacteriol; 1973 Jun; 114(3):1206-12. PubMed ID: 4145863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The labeling of pentose phosphate from glucose-14C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate synthesis.
    Katz J; Rognstad R
    Biochemistry; 1967 Jul; 6(7):2227-47. PubMed ID: 6049456
    [No Abstract]   [Full Text] [Related]  

  • 11. Phosphate esters in human erythrocytes. VII. Further evidence for ribose 1,5-diphosphate as a natural metabolite.
    Vanderheiden BS
    Biochim Biophys Acta; 1970 Aug; 215(2):242-8. PubMed ID: 5503385
    [No Abstract]   [Full Text] [Related]  

  • 12. Structural specificity of diamines covalently linked to peptidoglycan for cell growth of Veillonella alcalescens and Selenomonas ruminantium.
    Kamio Y
    J Bacteriol; 1987 Oct; 169(10):4837-40. PubMed ID: 3654585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pentose phosphate pathway in rabbit liver. Studies on the metabolic sequence and quantitative role of the pentose phosphate cycle by using a system in situ.
    Williams JF; Rienits KG; Schofield PJ; Clark MG
    Biochem J; 1971 Aug; 123(5):923-43. PubMed ID: 5124395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling of mixed chemostat cultures of an aerobic bacterium, Comamonas testosteroni, and an anaerobic bacterium, Veillonella alcalescens: comparison with experimental data.
    Gerritse J; Schut F; Gottschal JC
    Appl Environ Microbiol; 1992 May; 58(5):1466-76. PubMed ID: 1622213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The presence and function of cytochromes in Selenomonas ruminantium, Anaerovibrio lipolytica and Veillonella alcalescens.
    de Vries W; van Wijck-Kapteyn WM; Oosterhuis SK
    J Gen Microbiol; 1974 Mar; 81(1):69-78. PubMed ID: 4362619
    [No Abstract]   [Full Text] [Related]  

  • 16. Erythritol metabolism by Propionibacterium pentosaceum. The over-all reaction sequence.
    Wawszkiewicz EJ; Barker HA
    J Biol Chem; 1968 Apr; 243(8):1948-56. PubMed ID: 4296473
    [No Abstract]   [Full Text] [Related]  

  • 17. Carbon dioxide fixation by Veillonella parvula M 4 and its relation to propionic acid formation.
    Ng SK; Hamilton IR
    Can J Microbiol; 1973 Jun; 19(6):715-23. PubMed ID: 4712506
    [No Abstract]   [Full Text] [Related]  

  • 18. Nitrate-reductase electron-transport cofactors in Veillonella alcalescens.
    Ruoff KL; Delwiche EA
    Can J Microbiol; 1977 Nov; 23(11):1562-7. PubMed ID: 922606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pentose phosphate pathway of glucose metabolism. Enzyme profiles and transient and steady-state content of intermediates of alternative pathways of glucose metabolism in Krebs ascites cells.
    Gumaa KA; McLean P
    Biochem J; 1969 Dec; 115(5):1009-29. PubMed ID: 5360673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gluconeogenesis by Veillonella parvula M4: evidence for the indirect conversion of pyruvate to P-enolpyruvate.
    Ng SK; Hamilton IR
    Can J Microbiol; 1974 Jan; 20(1):19-28. PubMed ID: 4822778
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.