These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 4335447)

  • 21. Diazepam potentiates the effects of endogenous catecholamines on contractility and cyclic AMP levels in rat ventricular myocardium.
    Marín J; Hernández J
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Apr; 365(4):260-8. PubMed ID: 11919649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conditions for augmentation of renin release by theophylline.
    Langård O; Holdaas H; Eide I; Kiil F
    Scand J Clin Lab Invest; 1983 Feb; 43(1):9-14. PubMed ID: 6312554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the adrenergic receptors mediating a rise in cyclic 3'-5'-adenosine monophosphate in rat cerebral cortex.
    Perkins JP; Moore MM
    J Pharmacol Exp Ther; 1973 May; 185(2):371-8. PubMed ID: 4350039
    [No Abstract]   [Full Text] [Related]  

  • 24. Alpha-adrenergic reduction of cyclic adenosine monophosphate levels in rat ventricular myocardial cells.
    Watanabe AM; Besch HR; Hathaway DR; Harris RA; Farmer BB
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():431-6. PubMed ID: 201994
    [No Abstract]   [Full Text] [Related]  

  • 25. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3',5'-monophosphate, and theophylline.
    Grantham JJ; Orloff J
    J Clin Invest; 1968 May; 47(5):1154-61. PubMed ID: 4296382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolism of isolated kidney tubules. Independent actions of catecholamines on renal cyclic adenosine 3':5'-monophosphate levels and gluconeogenesis.
    Guder WG; Rupprecht A
    Eur J Biochem; 1975 Mar; 52(2):283-90. PubMed ID: 170087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adenosine regulation of cyclic 3',5'-adenosine monophosphate formation in rat spinal cord.
    Jones DJ
    J Pharmacol Exp Ther; 1981 Nov; 219(2):370-6. PubMed ID: 6270305
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of biogenic amines on the formation of adenosine 3',5'-monophosphate in human thyroid slices.
    Sato A; Hashizume K; Onaya T; Miyakawa M; Makiuchi M
    Endocrinol Jpn; 1977 Aug; 23(4):319-25. PubMed ID: 200414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of catecholamines on renin release in vitro.
    Desaulles E; Forler C; Velly J; Schwartz J
    Biomedicine; 1975 Sep; 22(5):433-9. PubMed ID: 1222215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of the adenosine cyclic 3',5'-monophosphate content of rat cerebral cortex: ontogenetic development of the responsiveness to catecholamines and adenosine.
    Perkins JP; Moore MM
    Mol Pharmacol; 1973 Nov; 9(6):774-82. PubMed ID: 4148655
    [No Abstract]   [Full Text] [Related]  

  • 31. Antagonism between parathyroid hormone and norepinephrine on cyclic adenosine-3':5'-monophosphate (cAMP) levels in isolated tubules from rat kidney cortex.
    Guder WG; Rupprecht A
    Pflugers Arch; 1975; 354(2):177-86. PubMed ID: 163466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alpha adrenergic involvement in heart metabolism: effects on adenosine cyclic 3',5'-monophosphate, adenosine cyclic 3',5'-monophosphate-dependent protein kinase, guanosine cyclic 3',5'-monophosphate, and glucose transport.
    Keely SL; Corbin JD; Lincoln T
    Mol Pharmacol; 1977 Sep; 13(5):965-75. PubMed ID: 197396
    [No Abstract]   [Full Text] [Related]  

  • 33. [Adrenergic effects on the renal function and their mechanisms].
    Krishtal' NV
    Fiziol Zh (1978); 1991; 37(3):70-5. PubMed ID: 1654283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of epinephrine, prostaglandins, and their antagonists on adenosine cyclic 3',5'-monophosphate concentrations and motility of the rat uterus.
    Vesin MF; Harbon S
    Mol Pharmacol; 1974 May; 10(3):457-73. PubMed ID: 4369301
    [No Abstract]   [Full Text] [Related]  

  • 35. Exogenous and endogenous catecholamines inhibit the production of macrophage inflammatory protein (MIP) 1 alpha via a beta adrenoceptor mediated mechanism.
    Haskó G; Shanley TP; Egnaczyk G; Németh ZH; Salzman AL; Vizi ES; Szabó C
    Br J Pharmacol; 1998 Nov; 125(6):1297-303. PubMed ID: 9863660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in responsiveness of the beta-adrenergic and serotonergic pathways of the rabbit corneal epithelium.
    Neufeld AH; Ledgard SE; Yoza BK
    Invest Ophthalmol Vis Sci; 1983 May; 24(5):527-34. PubMed ID: 6132896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Adrenergic lipolysis in human fat cells: properties and physiological role of alpha-adrenergic receptors (author's transl)].
    Berlan M; Lafontan M; Dang Tran L
    J Physiol (Paris); 1980; 76(2):133-46. PubMed ID: 6249915
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coronary artery cyclic AMP content during adrenergic receptor stimulation.
    Seidel CL; Schnarr RL; Sparks HV
    Am J Physiol; 1975 Aug; 229(2):265-9. PubMed ID: 169703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bronchodilator drug efficacy via cyclic AMP.
    Duncan PE; Griffin JP; Solomon SS
    Thorax; 1975 Apr; 30(2):192-6. PubMed ID: 170700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of adrenaline on acetylcholine synthesis after blockade of alpha- and beta-adrenergic receptors in vitro.
    Górny D; Billewicz-Stankiewicz J; Kleinrok A; Tomaszewski A
    Acta Physiol Pol; 1977; 28(4):313-20. PubMed ID: 22984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.