These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 4336314)
1. Studies on stabilization of the oxidative phosphorylation system. II. Electron transfer-dependent resistance of succinate oxidase and NADH oxidase systems of submitochondrial particles to proteinases and cobra venom phospholipase. Luzikov VN; Romashina LV Biochim Biophys Acta; 1972 Apr; 267(1):37-47. PubMed ID: 4336314 [No Abstract] [Full Text] [Related]
2. On the differences in the sensitivity of coupling sites of submitochondrial particles to phospholipases A, C and and D. Kupriyanov VV; Luzikov VN FEBS Lett; 1974 Sep; 45(1):267-70. PubMed ID: 4153419 [No Abstract] [Full Text] [Related]
3. [Mechanism of inactivation of the respiratory chain by cobra venom phospholipase]. Romashina LV; Voznaia MN; Grosse R; Rakhimov MM; Luzikov VN Biokhimiia; 1972; 37(6):1204-9. PubMed ID: 4345367 [No Abstract] [Full Text] [Related]
4. Interaction between NADH and succinate during simultaneous oxidation by non-phosphorylating submitochondrial particles from bovine heart. Davis EJ; Blair PV; Mahoney AJ Biochim Biophys Acta; 1969 Apr; 172(3):574-7. PubMed ID: 4305700 [No Abstract] [Full Text] [Related]
5. Studies with ubiquinone-depleted submitochondrial particles. Essentiality of ubiquinone for the interaction of succinate dehydrogenase, NADH dehydrogenase, and cytochrome b. Ernster L; Lee IY; Norling B; Persson B Eur J Biochem; 1969 Jun; 9(3):299-310. PubMed ID: 4307591 [No Abstract] [Full Text] [Related]
6. Succinate dehydrogenase. II. The effect of phospholipases on particulate and soluble succinate dehydrogenase. Cerletti P; Caiafa P; Giordano MG; Giovenco MA Biochim Biophys Acta; 1969; 191(3):502-8. PubMed ID: 4312203 [No Abstract] [Full Text] [Related]
7. Studies on the stabilization of an oxidative phosphorylation system. I. Resistance of a phosphorylating system of submitochondrial particles to trypsin, due to phosphorylation of ADP. Luzikov VN; Saks VA; Kupriyanov VV Biochim Biophys Acta; 1971 Nov; 253(1):46-57. PubMed ID: 4331272 [No Abstract] [Full Text] [Related]
8. Studies on stabilization of the oxidative phosphorylation system. 3. The effects of substrates and ATP on sensitivity of various energy-linked functions of submitochondrial particles to phospholipase a from Crotalus terrificus venom. Luzikov VN; Kupriyanov VV; Makhlis TA J Bioenerg; 1973 Jul; 4(5):521-32. PubMed ID: 4151486 [No Abstract] [Full Text] [Related]
9. [The protective effect of substrates under inactivation of NADH oxidase and succinate oxidase by cobra venom and trypsin]. Luzikov VN; Rakhimov MM; Saks VA; Berezin IV Biokhimiia; 1967; 32(6):1234-41. PubMed ID: 4298762 [No Abstract] [Full Text] [Related]
10. The effect of piericidin A on energy-linked processes in submitochondrial particles. Vallin I; Löw H Eur J Biochem; 1968 Aug; 5(3):402-8. PubMed ID: 4300601 [No Abstract] [Full Text] [Related]
11. [The effect of oxidazable substrates and ATP on the sensitivity of certain energy-dependent functions submitochondrial particles to phospholipases A, C and D]. Kupriianov VV; Luzikov VN Biokhimiia; 1975; 40(4):869-74. PubMed ID: 1116 [TBL] [Abstract][Full Text] [Related]
12. Does the activation of succinate dehydrogenase affect the phosphorylating system in sub mitochondrial particles? Gutman M; Gopher A FEBS Lett; 1973 Sep; 35(1):103-5. PubMed ID: 4356490 [No Abstract] [Full Text] [Related]
13. Effect of substrates on reconstitution of the mitochondrial respiratory chain under various conditions. Luzikov VN; Rakhimov MM; Berezin IV Biochim Biophys Acta; 1969 Aug; 180(3):429-38. PubMed ID: 4309365 [No Abstract] [Full Text] [Related]
14. Activation of NADH oxidase by succinate in partially ubiquinone-depleted submitochondrial particles. Glazek E; Norling B; Nelson BD; Ernster L FEBS Lett; 1974 Sep; 46(1):123-6. PubMed ID: 4154079 [No Abstract] [Full Text] [Related]
15. Mutual inhibition between NADH oxidase and succinoxidase activities in respiring submitochondrial particles. Gutman M; Silman N FEBS Lett; 1972 Oct; 26(1):207-10. PubMed ID: 4404628 [No Abstract] [Full Text] [Related]
16. Comparative study of thermal degradation of electron transfer particle and reconstituted respiratory chain. Relation of electron transfer to reactivation of submitochondrial particles. Luzikov VN; Saks VA; Berezin IV Biochim Biophys Acta; 1970 Nov; 223(1):16-30. PubMed ID: 4320753 [No Abstract] [Full Text] [Related]
17. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 23. Preservation of energy coupling in submitochondrial particles lacking cytochrome oxidase. Arion WJ; Racker E J Biol Chem; 1970 Oct; 245(20):5186-94. PubMed ID: 4319234 [No Abstract] [Full Text] [Related]
18. Purification and properties of a new coupling factor required for oxidative phosphorylation in silicotungstate-treated submitochondrial particles. Fessenden-Raden JM J Biol Chem; 1972 Apr; 247(8):2351-7. PubMed ID: 4336371 [No Abstract] [Full Text] [Related]
19. The relation between phospholipase action and release of NADH dehydrogenase from mitochondrial membrane. Awasthi YC; Ruzicka FJ; Crane FL Biochim Biophys Acta; 1970 Apr; 203(2):233-48. PubMed ID: 4315050 [No Abstract] [Full Text] [Related]
20. Binding of iron and copper to bovine heart mitochondria. II. Effect of mitochondrial metabolism. Cederbaum AI; Wainio WW J Biol Chem; 1972 Jul; 247(14):4604-14. PubMed ID: 4339721 [No Abstract] [Full Text] [Related] [Next] [New Search]