BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 4337243)

  • 1. Nitrogen ligands at the active site of alkaline phosphatase.
    Taylor JS; Coleman JE
    Proc Natl Acad Sci U S A; 1972 Apr; 69(4):859-62. PubMed ID: 4337243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structurally distinct active sites in the copper(II)-substituted aminopeptidases from Aeromonas proteolytica and Escherichia coli.
    Bennett B; Antholine WE; D'souza VM; Chen G; Ustinyuk L; Holz RC
    J Am Chem Soc; 2002 Nov; 124(44):13025-34. PubMed ID: 12405829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of metal ions in Escherichia coli alkaline phosphatase. A study of the metal-water interaction by nuclear relaxation rate measurements on water protons.
    Zukin RS; Hollis DP
    J Biol Chem; 1975 Feb; 250(3):835-42. PubMed ID: 163241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electron paramagnetic resonance study of bovine alpha-lactalbumin-metal ion complexes.
    Musci G; Reed GH; Berliner LJ
    J Inorg Biochem; 1986 Apr; 26(4):229-36. PubMed ID: 3011986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloride binding to alkaline phosphatase. 113Cd and 35Cl NMR.
    Gettins P; Coleman JE
    J Biol Chem; 1984 Sep; 259(17):11036-40. PubMed ID: 6381493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 65Zn(II), 115mCd(II), 60Co(II), and mg(II) binding to alkaline phosphatase of Escherichia coli. Structural and functional effects.
    Coleman JE; Nakamura K; Chlebowski JF
    J Biol Chem; 1983 Jan; 258(1):386-95. PubMed ID: 6336751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zn(II)-113Cd(II) and Zn(II)-Mg(II) hybrids of alkaline phosphatase. 31P and 113Cd NMR.
    Gettins P; Coleman JE
    J Biol Chem; 1984 Apr; 259(8):4991-7. PubMed ID: 6370997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron spin resonance studies of carbonic anhydrase: transition metal ions and spin-labeled sulfonamides.
    Taylor JS; Mushak P; Coleman JE
    Proc Natl Acad Sci U S A; 1970 Nov; 67(3):1410-6. PubMed ID: 4320976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peculiarity in the electronic structure of Cu(II) complex ferromagnetically coupled with bisimino nitroxides.
    Ikoma T; Oshio H; Yamamoto M; Ohba Y; Nihei M
    J Phys Chem A; 2008 Sep; 112(37):8641-8. PubMed ID: 18714950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the properties of the multiple metal binding sites in alkaline phosphatase by carbon-13 nuclear magnetic resonance.
    Otvos JD; Armitage IM
    Biochemistry; 1980 Aug; 19(17):4021-30. PubMed ID: 6996714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study on the direct interaction between alkaline phophatase and Cu(II) ions by spectral analysis].
    Wang J; Zheng X; An L; Gai H; Hu J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Aug; 21(4):432-4. PubMed ID: 12945252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 113Cd NMR. Arsenate binding to Cd(II) alkaline phosphatase.
    Gettins P; Coleman JE
    J Biol Chem; 1984 Apr; 259(8):4987-90. PubMed ID: 6425281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase.
    Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T
    J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the copper(II) binding site in the pink copper binding protein CusF by electron paramagnetic resonance spectroscopy.
    Astashkin AV; Raitsimring AM; Walker FA; Rensing C; McEvoy MM
    J Biol Inorg Chem; 2005 May; 10(3):221-30. PubMed ID: 15770503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the possible roles of N-terminal His-rich domains of Cu,Zn SODs of some Gram-negative bacteria.
    Arus D; Jancsó A; Szunyogh D; Matyuska F; Nagy NV; Hoffmann E; Körtvélyesi T; Gajda T
    J Inorg Biochem; 2012 Jan; 106(1):10-8. PubMed ID: 22105012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syntheses and thermal reactivities of tetradentate metalloenediynes of Cu(II) and Zn(II).
    Chandra T; Allred RA; Kraft BJ; Berreau LM; Zaleski JM
    Inorg Chem; 2004 Jan; 43(2):411-20. PubMed ID: 14731002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral studies of the interactions of Escherichia coli alkaline phosphatase with 4-(4-aminophenylazo)-phenylarsonic acid.
    Szajn H; Csopak H; Fölsch G
    Biochim Biophys Acta; 1977 Jan; 480(1):154-62. PubMed ID: 318870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conformation and orientation of copper (II)-bleomycin intercalated with DNA.
    Shields H; McGlumphy C; Hamrick PJ
    Biochim Biophys Acta; 1982 Apr; 697(1):113-20. PubMed ID: 6177343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron paramagnetic resonance study of the active site of copper-substituted human glyoxalase I.
    Sellin S; Eriksson LE; Mannervik B
    Biochemistry; 1987 Oct; 26(21):6779-84. PubMed ID: 2827734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.