These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 4337243)

  • 1. Nitrogen ligands at the active site of alkaline phosphatase.
    Taylor JS; Coleman JE
    Proc Natl Acad Sci U S A; 1972 Apr; 69(4):859-62. PubMed ID: 4337243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structurally distinct active sites in the copper(II)-substituted aminopeptidases from Aeromonas proteolytica and Escherichia coli.
    Bennett B; Antholine WE; D'souza VM; Chen G; Ustinyuk L; Holz RC
    J Am Chem Soc; 2002 Nov; 124(44):13025-34. PubMed ID: 12405829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of metal ions in Escherichia coli alkaline phosphatase. A study of the metal-water interaction by nuclear relaxation rate measurements on water protons.
    Zukin RS; Hollis DP
    J Biol Chem; 1975 Feb; 250(3):835-42. PubMed ID: 163241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electron paramagnetic resonance study of bovine alpha-lactalbumin-metal ion complexes.
    Musci G; Reed GH; Berliner LJ
    J Inorg Biochem; 1986 Apr; 26(4):229-36. PubMed ID: 3011986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloride binding to alkaline phosphatase. 113Cd and 35Cl NMR.
    Gettins P; Coleman JE
    J Biol Chem; 1984 Sep; 259(17):11036-40. PubMed ID: 6381493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 65Zn(II), 115mCd(II), 60Co(II), and mg(II) binding to alkaline phosphatase of Escherichia coli. Structural and functional effects.
    Coleman JE; Nakamura K; Chlebowski JF
    J Biol Chem; 1983 Jan; 258(1):386-95. PubMed ID: 6336751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zn(II)-113Cd(II) and Zn(II)-Mg(II) hybrids of alkaline phosphatase. 31P and 113Cd NMR.
    Gettins P; Coleman JE
    J Biol Chem; 1984 Apr; 259(8):4991-7. PubMed ID: 6370997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron spin resonance studies of carbonic anhydrase: transition metal ions and spin-labeled sulfonamides.
    Taylor JS; Mushak P; Coleman JE
    Proc Natl Acad Sci U S A; 1970 Nov; 67(3):1410-6. PubMed ID: 4320976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peculiarity in the electronic structure of Cu(II) complex ferromagnetically coupled with bisimino nitroxides.
    Ikoma T; Oshio H; Yamamoto M; Ohba Y; Nihei M
    J Phys Chem A; 2008 Sep; 112(37):8641-8. PubMed ID: 18714950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the properties of the multiple metal binding sites in alkaline phosphatase by carbon-13 nuclear magnetic resonance.
    Otvos JD; Armitage IM
    Biochemistry; 1980 Aug; 19(17):4021-30. PubMed ID: 6996714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study on the direct interaction between alkaline phophatase and Cu(II) ions by spectral analysis].
    Wang J; Zheng X; An L; Gai H; Hu J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Aug; 21(4):432-4. PubMed ID: 12945252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 113Cd NMR. Arsenate binding to Cd(II) alkaline phosphatase.
    Gettins P; Coleman JE
    J Biol Chem; 1984 Apr; 259(8):4987-90. PubMed ID: 6425281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase.
    Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T
    J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the copper(II) binding site in the pink copper binding protein CusF by electron paramagnetic resonance spectroscopy.
    Astashkin AV; Raitsimring AM; Walker FA; Rensing C; McEvoy MM
    J Biol Inorg Chem; 2005 May; 10(3):221-30. PubMed ID: 15770503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the possible roles of N-terminal His-rich domains of Cu,Zn SODs of some Gram-negative bacteria.
    Arus D; Jancsó A; Szunyogh D; Matyuska F; Nagy NV; Hoffmann E; Körtvélyesi T; Gajda T
    J Inorg Biochem; 2012 Jan; 106(1):10-8. PubMed ID: 22105012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syntheses and thermal reactivities of tetradentate metalloenediynes of Cu(II) and Zn(II).
    Chandra T; Allred RA; Kraft BJ; Berreau LM; Zaleski JM
    Inorg Chem; 2004 Jan; 43(2):411-20. PubMed ID: 14731002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral studies of the interactions of Escherichia coli alkaline phosphatase with 4-(4-aminophenylazo)-phenylarsonic acid.
    Szajn H; Csopak H; Fölsch G
    Biochim Biophys Acta; 1977 Jan; 480(1):154-62. PubMed ID: 318870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conformation and orientation of copper (II)-bleomycin intercalated with DNA.
    Shields H; McGlumphy C; Hamrick PJ
    Biochim Biophys Acta; 1982 Apr; 697(1):113-20. PubMed ID: 6177343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron paramagnetic resonance study of the active site of copper-substituted human glyoxalase I.
    Sellin S; Eriksson LE; Mannervik B
    Biochemistry; 1987 Oct; 26(21):6779-84. PubMed ID: 2827734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.