These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 4337270)
1. The effects of technical chlordane on growth and energy metabolism of Streptococcus faecalis and Mycobacterium phlei: a comparison with Bacillus subtilis. Widdus R; Trudgill PW; Turnell DC J Gen Microbiol; 1971 Nov; 69(1):23-31. PubMed ID: 4337270 [No Abstract] [Full Text] [Related]
2. The effects of technical chlordane on energy metabolism of Bacillus subtilis. Widdus R; Trudgill PW; Maliszewski MJ J Gen Microbiol; 1971 Nov; 69(1):15-22. PubMed ID: 4337269 [No Abstract] [Full Text] [Related]
3. Cytochromes in Streptococcus faecalis var. zymogenes grown in a haematin-containing medium. Ritchey TW; Seeley HW J Gen Microbiol; 1974 Dec; 85(2):220-8. PubMed ID: 4155716 [No Abstract] [Full Text] [Related]
4. Orientation of the cell membrane in ghosts and electron transport particles of Mycobacterium phlei. Asano A; Cohen NS; Baker RF; Brodie AF J Biol Chem; 1973 May; 248(10):3386-97. PubMed ID: 4349862 [No Abstract] [Full Text] [Related]
5. Haematin-dependent oxidative phosphorylation in Streptococcus faecalis. Bryan-Jones DG; Whittenbury R J Gen Microbiol; 1969 Oct; 58(2):247-60. PubMed ID: 4391229 [No Abstract] [Full Text] [Related]
6. Reversal of the effects of freezing on oxidative phosphorylation in the Mycobacterium phlei system. Aithal HN; Kalra VK; Brodie AF Biochem Biophys Res Commun; 1971 May; 43(3):550-6. PubMed ID: 4327443 [No Abstract] [Full Text] [Related]
7. Effect of N,N'-dicyclohexylcarbodiimide (DCCD) on electron transport particles of Mycobacterium phlei. Kalra VK; Brodie AF Arch Biochem Biophys; 1971 Dec; 147(2):653-9. PubMed ID: 4332727 [No Abstract] [Full Text] [Related]
8. Gadolinium ion inhibits loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria. Berrier C; Coulombe A; Szabo I; Zoratti M; Ghazi A Eur J Biochem; 1992 Jun; 206(2):559-65. PubMed ID: 1350764 [TBL] [Abstract][Full Text] [Related]
9. Feedback control mechanisms in micro-organisms and efficiency of growth. Stebbing N Subcell Biochem; 1973; 2(2):169-82. PubMed ID: 4373882 [No Abstract] [Full Text] [Related]
10. Alteration of membrane permeability in Bacillus subtilis by clofoctol. Yablonsky F J Gen Microbiol; 1983 Apr; 129(4):1089-95. PubMed ID: 6411855 [TBL] [Abstract][Full Text] [Related]
11. [Autolysis of bacterial cell surface and its physiology (biosynthesis)]. Kusaka I Tanpakushitsu Kakusan Koso; 1972 Aug; 17(8):581-7. PubMed ID: 4143920 [No Abstract] [Full Text] [Related]
12. The effect of trypsin and heat treatment on oxidative phosphorylation in Mycobacterium phlei. Bogin E; Higashi T; Brodie AF Biochem Biophys Res Commun; 1970 Nov; 41(4):995-1001. PubMed ID: 4320074 [No Abstract] [Full Text] [Related]
13. Molar growth yields as evidence for oxidative phosphorylation in Streptococcus faecalis strain 10Cl. Smalley AJ; Jahrling P; Van Demark PJ J Bacteriol; 1968 Nov; 96(5):1595-600. PubMed ID: 4302299 [TBL] [Abstract][Full Text] [Related]
14. Knockout of the high-coupling cytochrome aa3 oxidase reduces TCA cycle fluxes in Bacillus subtilis. Zamboni N; Sauer U FEMS Microbiol Lett; 2003 Sep; 226(1):121-6. PubMed ID: 13129617 [TBL] [Abstract][Full Text] [Related]
15. Transport and binding of galactose by Streptococcus faecalis. Wilkins PO Can J Microbiol; 1970 Dec; 16(12):1145-51. PubMed ID: 5000284 [No Abstract] [Full Text] [Related]
16. Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis. Ordal GW; Goldman DJ Science; 1975 Sep; 189(4205):802-5. PubMed ID: 808854 [TBL] [Abstract][Full Text] [Related]
17. The mode of action of primycin. Horváth I; Kramer M; Bauer PI; Büki KG Arch Microbiol; 1979 May; 121(2):135-9. PubMed ID: 158351 [No Abstract] [Full Text] [Related]