BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 4337436)

  • 21. Immunohistochemical localization of glutamate decarboxylase in rat cerebellum.
    Saito K; Barber R; Wu J; Matsuda T; Roberts E; Vaughn JE
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):269-73. PubMed ID: 4131274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inositol 1,4,5-trisphosphate 3-kinase distribution in the rat brain. High levels in the hippocampal CA1 pyramidal and cerebellar Purkinje cells suggest its involvement in some memory processes.
    Mailleux P; Takazawa K; Erneux C; Vanderhaeghen JJ
    Brain Res; 1991 Jan; 539(2):203-10. PubMed ID: 1647240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proliferation of norepinephrine-containing axons in rat cerebellar cortex after peduncle lesions.
    Pickel VM; Krebs H; Bloom FE
    Brain Res; 1973 Sep; 59():169-79. PubMed ID: 4747749
    [No Abstract]   [Full Text] [Related]  

  • 24. Accumulation of glutamic acid decarboxylase in the proximal parts of presumed GABA-ergic neurones after axotomy.
    Storm-Mathisen J
    Brain Res; 1975 Apr; 87(1):107-9. PubMed ID: 235348
    [No Abstract]   [Full Text] [Related]  

  • 25. Stoichiometry of GABA and CO2 formation in glutamate decarboxylase assays: alteration by an impurity L-U-[14C] glutamate.
    Morin AM; Wasterlain CG
    J Neurochem; 1978 Jul; 31(1):371-3. PubMed ID: 671034
    [No Abstract]   [Full Text] [Related]  

  • 26. Sagittal cerebellar microbands of taurine neurons: immunocytochemical demonstration by using antibodies against the taurine-synthesizing enzyme cysteine sulfinic acid decarboxylase.
    Chan-Palay V; Palay SL; Wu JY
    Proc Natl Acad Sci U S A; 1982 Jul; 79(13):4221-5. PubMed ID: 6955797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for selective post-lesion axonal growth in the dentate gyrus of the rat.
    Lynch G; Stanfield B; Parks T; Cotman CW
    Brain Res; 1974 Mar; 69(1):1-11. PubMed ID: 4817913
    [No Abstract]   [Full Text] [Related]  

  • 28. 5-Hydroxytryptamine and noradrenaline in the hippocampal region: effect of transection of afferent pathways on endogenous levels, high affinity uptake and some transmitter-related enzymes.
    Storm-Mathisen J; Guldberg HC
    J Neurochem; 1974 May; 22(5):793-803. PubMed ID: 4600898
    [No Abstract]   [Full Text] [Related]  

  • 29. Taurine in the mammalian cerebellum: demonstration by autoradiography with [3H]taurine and immunocytochemistry with antibodies against the taurine-synthesizing enzyme, cysteine-sulfinic acid decarboxylase.
    Chan-Palay V; Lin CT; Palay S; Yamamoto M; Wu JY
    Proc Natl Acad Sci U S A; 1982 Apr; 79(8):2695-9. PubMed ID: 6953423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alteration of GABA system and Purkinje cells in rat cerebellum by the convulsant 3-mercaptopropionic acid.
    Rodríguez de Lores Arn ; De Canal MA; De Robertis E
    J Neurochem; 1972 May; 19(5):1379-85. PubMed ID: 4401999
    [No Abstract]   [Full Text] [Related]  

  • 31. Stain-dependent differences between the septo-hippocampal cholinergic system and hippocampal size.
    Gilad GM; Gilad VH
    Brain Res; 1981 Oct; 222(2):423-7. PubMed ID: 6116523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The thalamic territory of cerebellar afferents and the lateral region of the thalamus of the macaque in sterotaxic ventricular coordinates.
    Percherson G
    J Hirnforsch; 1977; 18(5):376-400. PubMed ID: 416140
    [No Abstract]   [Full Text] [Related]  

  • 33. Neurochemical and morphological consequences of axon terminal degeneration in cerebellar deep nuclei of mice with inherited Purkinje cell degeneration.
    Roffler-Tarlov S; Beart PM; O'Gorman S; Sidman RL
    Brain Res; 1979 May; 168(1):75-95. PubMed ID: 455087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 2-Amine 4-pentenoic acid (allylglycine): a proposed tool for the study of GABA mediated systems.
    Rodríguez de Lores Arn ; Alberici de Canal M; De Robertis E
    Int J Neurosci; 1971 Sep; 2(3):137-44. PubMed ID: 4143955
    [No Abstract]   [Full Text] [Related]  

  • 35. Application of microchemical analysis and subcellular fractionation techniques to the study of neurotransmitters in discrete areas of mammalian brain.
    Fonnum F
    Adv Biochem Psychopharmacol; 1972; 6():75-88. PubMed ID: 4341335
    [No Abstract]   [Full Text] [Related]  

  • 36. Rat brain L-3,4-dihydroxyphenylalanine and L-5-hydroxytryptophan decarboxylase activities: differential effect of 6-hydroxydopamine.
    Sims KL; Bloom FE
    Brain Res; 1973 Jan; 49(1):165-75. PubMed ID: 4540548
    [No Abstract]   [Full Text] [Related]  

  • 37. Brain levels and turnover rates of presumptive neurotransmitters as influenced by administration and withdrawal of ethanol in mice.
    Rawat AK
    J Neurochem; 1974 Jun; 22(6):915-22. PubMed ID: 4850820
    [No Abstract]   [Full Text] [Related]  

  • 38. Activity of glutamate decarboxylase in the brain of rats exposed to carbon disulfide.
    Tarkowski S
    Int Arch Arbeitsmed; 1974 Mar; 33(1):79-82. PubMed ID: 4831419
    [No Abstract]   [Full Text] [Related]  

  • 39. Enzyme changes after undercutting of cerebral cortex in the rat.
    Ulmar G; Ljungdahl A; Hökfelt T
    Exp Neurol; 1975 Jan; 46(1):199-208. PubMed ID: 1109337
    [No Abstract]   [Full Text] [Related]  

  • 40. Chemical heterogeneity in cerebellar Purkinje cells: existence and coexistence of glutamic acid decarboxylase-like and motilin-like immunoreactivities.
    Chan-Palay V; Nilaver G; Palay SL; Beinfeld MC; Zimmerman EA; Wu JY; O'Donohue TL
    Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7787-91. PubMed ID: 7038682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.