These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 4337536)

  • 1. Function and properties of aminoacyl transferase II. II. Subcellular distribution during asynchronous and synchronous growth.
    Henriksen O; Smulson ME
    Arch Biochem Biophys; 1972 May; 150(1):175-82. PubMed ID: 4337536
    [No Abstract]   [Full Text] [Related]  

  • 2. Diphtheria toxin: requirement for active protein synthesis for inactivation of aminoacyl transferase II in the intact mammalian cell.
    Smulson ME; Rideau C; Raeburn S
    Biochim Biophys Acta; 1970 Nov; 224(1):268-71. PubMed ID: 5490260
    [No Abstract]   [Full Text] [Related]  

  • 3. Association of aminoacyl transferase II with ribosomes of intact HeLa cells during amino acid deprivation.
    Smulson ME; Rideau C
    J Biol Chem; 1970 Oct; 245(20):5350-3. PubMed ID: 5469170
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on transferase II using diphtheria toxin.
    Gill DM; Pappenheimer AM; Baseman JB
    Cold Spring Harb Symp Quant Biol; 1969; 34():595-602. PubMed ID: 4314915
    [No Abstract]   [Full Text] [Related]  

  • 5. Adenosine diphosphoribosylation of aminoacyl transferase II by diphtheria toxin.
    Honjo T; Nishizuka Y; Hayaishi O
    Cold Spring Harb Symp Quant Biol; 1969; 34():603-8. PubMed ID: 4314916
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies on diphtheria toxin. The effect of GTP on the toxin-dependent adenosine diphosphate ribosylation of rat liver aminoacyl transferase. II.
    Sperti S; Montanaro L; Mattioli A
    Chem Biol Interact; 1971 Apr; 3(2):141-8. PubMed ID: 4333440
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies on the mode of action of diphtheria toxin. VII. Toxin-stimulated hydrolysis of nicotinamide adenine dinucleotide in mammalian cell extracts.
    Gill DM; Pappenheimer AM; Brown R; Kurnick JT
    J Exp Med; 1969 Jan; 129(1):1-21. PubMed ID: 4304436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythromycin, a peptidyltransferase effector.
    Mao JC; Robishaw EE
    Biochemistry; 1972 Dec; 11(25):4864-72. PubMed ID: 4570249
    [No Abstract]   [Full Text] [Related]  

  • 9. Substrates for ribosomal peptidyl transferase: synthesis of 3'-N-aminoacyl and 5'-O-nucleotidyl analogues of puromycin.
    Harris RJ; Mercer JF; Skingle DC; Symons RH
    Can J Biochem; 1972 Aug; 50(8):918-26. PubMed ID: 5080375
    [No Abstract]   [Full Text] [Related]  

  • 10. Adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis by diphtheria toxin.
    Honjo T; Nishizuka Y; Kato I; Hayaishi O
    J Biol Chem; 1971 Jul; 246(13):4251-60. PubMed ID: 4326212
    [No Abstract]   [Full Text] [Related]  

  • 11. Function and properties of aminoacyl transferases and aminoacyl-tRNA synthetases in rat liver and HeLa cells.
    Smulson M; Lin CS; Chirikjian JG
    Arch Biochem Biophys; 1975 Apr; 167(2):458-68. PubMed ID: 1124929
    [No Abstract]   [Full Text] [Related]  

  • 12. Translocase activity in the aminoacyl transferase II fraction from rat liver.
    Schneider JA; Raeburn S; Maxwell ES
    Biochem Biophys Res Commun; 1968 Oct; 33(1):177-81. PubMed ID: 5696502
    [No Abstract]   [Full Text] [Related]  

  • 13. Peptide bond formation on the ribosome. Structural requirements for inhibition of protein synthesis and of release of peptides from peptidyl-tRNA on bacterial and mammalian ribosomes by aminoacyl and nucleotidyl analogues of puromycin.
    Harris RJ; Hanlon JE; Symons RH
    Biochim Biophys Acta; 1971 Jun; 240(2):244-62. PubMed ID: 4934602
    [No Abstract]   [Full Text] [Related]  

  • 14. Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis.
    Honjo T; Nishizuka Y; Hayaishi O
    J Biol Chem; 1968 Jun; 243(12):3553-5. PubMed ID: 4297784
    [No Abstract]   [Full Text] [Related]  

  • 15. The diphtheria toxin-dependent adenosine diphosphate ribosylation of rat liver aminoacyl transferase. II. General characteristics and mechanism of the reaction.
    Goor RS; Maxwell ES
    J Biol Chem; 1970 Feb; 245(3):616-23. PubMed ID: 4312869
    [No Abstract]   [Full Text] [Related]  

  • 16. Enhancement of the phenylalanyl-oligonucleotide binding to the peptidyl recognition center of ribosomal peptidyltransferase and inhibition of the chloramphenicol binding to ribosomes.
    Yukioka M; Morisawa S
    Biochim Biophys Acta; 1971 Dec; 254(2):304-15. PubMed ID: 4944565
    [No Abstract]   [Full Text] [Related]  

  • 17. The interaction of aminoacyl transferase II and ribosomes.
    Sutter RP; Moldave K
    J Biol Chem; 1966 Apr; 241(8):1698-704. PubMed ID: 5945844
    [No Abstract]   [Full Text] [Related]  

  • 18. Peptidyl transferase activity in rat skeletal muscle ribosomes after protein restriction.
    von der Decken A
    J Nutr; 1977 Jul; 107(7):1335-9. PubMed ID: 195020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of ADP-ribosylated aminoacyl-transferase II with GTP and with ribosomes.
    Montanaro L; Sperti S; Mattioli A
    Biochim Biophys Acta; 1971 May; 238(3):493-7. PubMed ID: 4327727
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on transfer ribonucleic acid-ribosome complexes. XX. Peptidyl-puromycin synthesis on mammalian polyribosomes.
    Pestka S; Goorha R; Rosenfeld H; Neurath C; Hintikka H
    J Biol Chem; 1972 Jul; 247(13):4258-63. PubMed ID: 5035691
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.