These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 4337855)

  • 1. The mechanism of aconitase action. 3. Detection and properties of enzyme-metal-substrate and enzyme-metal-inhibitor bridge complexes with manganese(II) and iron(II).
    Villafranca JJ; Mildvan AS
    J Biol Chem; 1972 Jun; 247(11):3454-63. PubMed ID: 4337855
    [No Abstract]   [Full Text] [Related]  

  • 2. The mechanism of aconitase action. II. Magnetic resonance studies of the complexes of enzyme, manganese(II), iron(II), and substrates.
    Villafranca JJ; Mildvan AS
    J Biol Chem; 1971 Sep; 246(18):5791-8. PubMed ID: 4328840
    [No Abstract]   [Full Text] [Related]  

  • 3. The mechanism of aconitase action. Evidence for an enzyme isomerization by studies of inhibition by tricarboxylic acids.
    Villafranca JJ
    J Biol Chem; 1974 Oct; 249(19):6149-55. PubMed ID: 4422090
    [No Abstract]   [Full Text] [Related]  

  • 4. 1,2,3-DL-tricarboxycyclopentene-1 and other inhibitors of cis-aconitase.
    Gawron O; Birckbichler PJ
    Arch Biochem Biophys; 1971 Dec; 147(2):772-80. PubMed ID: 5136110
    [No Abstract]   [Full Text] [Related]  

  • 5. Kinetic and magnetic resonance studies of the mechanism of D-xylose isomerase. I. Binary and ternary complexes with manganese(II), substrates, and inhibitors.
    Schray KJ; Mildvan AS
    J Biol Chem; 1972 Apr; 247(7):2034-7. PubMed ID: 4335859
    [No Abstract]   [Full Text] [Related]  

  • 6. Cis- and trans-aconitates: their probable conformations in the active sites of enzymes utilizing aconitate as a substrate.
    Glusker JP
    Arch Biochem Biophys; 1972 Jul; 151(1):322-7. PubMed ID: 5044522
    [No Abstract]   [Full Text] [Related]  

  • 7. Magnetic resonance and kinetic studie of the activation of beta-methylaspartase by manganese.
    Fields GA; Bright HJ
    Biochemistry; 1970 Sep; 9(19):3801-9. PubMed ID: 4323612
    [No Abstract]   [Full Text] [Related]  

  • 8. Fluorocitrate inhibition of aconitase. Reversibility of the inactivation.
    Villafranca JJ; Platus E
    Biochem Biophys Res Commun; 1973 Dec; 55(4):1197-207. PubMed ID: 4771993
    [No Abstract]   [Full Text] [Related]  

  • 9. 13C NMR studies of ferrous citrates in acidic and alkaline solutions. Implications concerning the active site of aconitase.
    Strouse J
    J Am Chem Soc; 1977 Jan; 99(2):572-80. PubMed ID: 12203
    [No Abstract]   [Full Text] [Related]  

  • 10. The role of iron in the activation of mannonic and altronic acid hydratases, two Fe-requiring hydro-lyases.
    Dreyer JL
    Eur J Biochem; 1987 Aug; 166(3):623-30. PubMed ID: 3038546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mandelate racemase from Pseudomonas putida. Magnetic resonance and kinetic studies of the mechanism of catalysis.
    Maggio ET; Kenyon GL; Mildvan AS; Hegeman GD
    Biochemistry; 1975 Mar; 14(6):1131-9. PubMed ID: 164210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxaloacetate inhibition of aconitate hydratase.
    Britten JS
    Biochim Biophys Acta; 1969 Apr; 178(2):370-5. PubMed ID: 5772411
    [No Abstract]   [Full Text] [Related]  

  • 13. Pyruvate carboxylase. X. The demonstration of direct coordination of pyruvate and alpha-ketobutyrate by the bound manganese and the formation of enzyme-metal-substrate bridge complexes.
    Mildvan AS; Scrutton MC
    Biochemistry; 1967 Oct; 6(10):2978-94. PubMed ID: 6069856
    [No Abstract]   [Full Text] [Related]  

  • 14. Magnetic resonance study of the three-dimensional structure of creatine kinase-substrate complexes. Implications for substrate specificity and catalytic mechanism.
    McLaughlin AC; Leigh JS; Cohn M
    J Biol Chem; 1976 May; 251(9):2777-87. PubMed ID: 177421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of aconitase action deduced from crystallographic studies of its substrates.
    Glusker JP
    J Mol Biol; 1968 Dec; 38(2):149-62. PubMed ID: 5761100
    [No Abstract]   [Full Text] [Related]  

  • 16. Magnetic resonance studies of enzyme-substrate complexes with paramagnetic probes as illustrated by creatine kinase.
    Cohn M
    Q Rev Biophys; 1970 Feb; 3(1):61-89. PubMed ID: 4314327
    [No Abstract]   [Full Text] [Related]  

  • 17. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of Escherichia coli deoxyribonucleic acid polymerase I. Magnetic resonance and kinetic studies of the role of metals.
    Slater JP; Tamir I; Loeb LA; Mildvan AS
    J Biol Chem; 1972 Nov; 247(21):6784-94. PubMed ID: 4343158
    [No Abstract]   [Full Text] [Related]  

  • 19. Fluorocitrate inhibition of aconitase: relative configuration of inhibitory isomer by x-ray crystallography.
    Carrell HL; Glusker JP; Villafranca JJ; Mildvan AS; Dummel RJ; Kun E
    Science; 1970 Dec; 170(3965):1412-4. PubMed ID: 5481856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manganese (II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). II. Electron paramagnetic resonance and nuclear magnetic resonance studies of enzyme-bound manganese(II) with substrates and a potential transition-state analogue, methionine sulfoximine.
    Villafranca JJ; Ash DE; Wedler FC
    Biochemistry; 1976 Feb; 15(3):544-53. PubMed ID: 3200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.