These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 4338488)

  • 1. The in vitro metabolism of 25-hydroxycholecalciferol to 1,25-dihydroxycholecalciferol by chick renal tubules. Effect of actinomycin D, puromycin, calcium, and parathyroid hormone.
    Shain SA
    J Biol Chem; 1972 Jul; 247(13):4404-13. PubMed ID: 4338488
    [No Abstract]   [Full Text] [Related]  

  • 2. In vitro metabolism of 25-hydroxycholecalciferol by chick intestinal and renal cell preparations. Identification of a metabolic product as 1,25-dihydroxycholecalciferol and delineation of its metabolic fate in intestinal cells.
    Shain SA
    J Biol Chem; 1972 Jul; 247(13):4393-403. PubMed ID: 4338487
    [No Abstract]   [Full Text] [Related]  

  • 3. Hormonal control of the renal conversion of 25-hydroxycholecalciferol to 1,25-dihydroxycholecalciferol.
    Rasmussen H; Wong M; Bikle D; Goodman DB
    J Clin Invest; 1972 Sep; 51(9):2502-4. PubMed ID: 4344734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nucleotides, hormones, ions, and 1,25-dihydroxycholecalciferon on 1,25-dihydroxycholecalciferol production in isolated chick renal tubules.
    Larkins RG; MacAuley SJ; Rapoport A; Martin TJ; Tulloch BR; Byfield PG; Matthews EW; MacIntyre I
    Clin Sci Mol Med; 1974 May; 46(5):569-82. PubMed ID: 4366966
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibitors of protein and RNA synthesis and 1,25-dihydroxycholecalciferol formation in vitro.
    Larkins RG; Macauley SJ; Macintyre I
    Mol Cell Endocrinol; 1975 Mar; 2(3):193-202. PubMed ID: 1123104
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanism of action of 1,25-dihydroxycholecalciferol on intestinal calcium transport.
    Tanaka Y; DeLuca HF; Omdahl J; Holick MF
    Proc Natl Acad Sci U S A; 1971 Jun; 68(6):1286-8. PubMed ID: 4331086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic control of renal gluconeogenesis. II. The effects of Ca2+ and H+ upon the response to parathyroid hormone and cyclic AMP.
    Kurokawa K; Ohno T; Rasmussen H
    Biochim Biophys Acta; 1973 Jun; 313(1):32-41. PubMed ID: 4355565
    [No Abstract]   [Full Text] [Related]  

  • 8. The hormone-like action of 1,25-(OH)2-cholecalciferol (a metabolite of the fat-soluble vitamin D) in the intestine.
    Norman AW
    Vitam Horm; 1974; 32():325-84. PubMed ID: 4376297
    [No Abstract]   [Full Text] [Related]  

  • 9. Control of 25-hydroxycholecalciferol metabolism by parathyroid glands.
    Garabedian M; Holick MF; Deluca HF; Boyle IT
    Proc Natl Acad Sci U S A; 1972 Jul; 69(7):1673-6. PubMed ID: 4340153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic control of renal gluconeogenesis. IV. Effect of extracellular phosphate concentration.
    Kurokawa K; Rasmussen H
    Biochim Biophys Acta; 1973 Jun; 313(1):59-71. PubMed ID: 4355566
    [No Abstract]   [Full Text] [Related]  

  • 11. Renal gluconeogenesis: effects of parathyroid hormone and dibutyryl 3',5'-AMP.
    Rasmussen H; Nagata N
    Biochim Biophys Acta; 1970 Jul; 215(1):17-28. PubMed ID: 4321961
    [No Abstract]   [Full Text] [Related]  

  • 12. Induction of bone resorption in tissue culture. Prolonged response after brief exposure to parathyroid hormone or 25-hydroxycholecalciferol.
    Raisz LG; Trummel CL; Simmons H
    Endocrinology; 1972 Mar; 90(3):744-51. PubMed ID: 4333145
    [No Abstract]   [Full Text] [Related]  

  • 13. The regulatory role of calcium in 25-hydroxycholecalciferol metabolism in chick kidney in vitro.
    Horiuchi N; Suda T; Sasaki S; Ogata E; Ezawa I
    Arch Biochem Biophys; 1975 Dec; 171(2):540-8. PubMed ID: 1106328
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on calciferol metabolism. VII. The effects of actinomycin D and cycloheximide on the metabolism, tissue and subcellular localization, and action of vitamin D3.
    Tsai HC; Midgett RJ; Norman AW
    Arch Biochem Biophys; 1973 Aug; 157(2):339-47. PubMed ID: 4354317
    [No Abstract]   [Full Text] [Related]  

  • 15. [New data on the metabolism and mechanism of action of vitamin D].
    Trufanov AV
    Vopr Med Khim; 1973; 19(6):563-7. PubMed ID: 4369630
    [No Abstract]   [Full Text] [Related]  

  • 16. Morphology and hormonal responsiveness of renal cortical tubules in vitro.
    Biddulph DM; Wrenn RW
    Am J Anat; 1977 Dec; 150(4):539-57. PubMed ID: 202159
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects and interactions of parathyroid hormone and prostaglandins on adenosine 3',5'-monophosphate concentrations in isolated renal tubules.
    Biddulph DM; Currie MG; Wrenn RW
    Endocrinology; 1979 Apr; 104(4):1164-71. PubMed ID: 86437
    [No Abstract]   [Full Text] [Related]  

  • 18. Parathyroid hormone-induced calcium efflux from isolated renal cortical tubules: evidence for cyclic AMP mediation.
    Wrenn RW; Biddulph DM
    Mol Cell Endocrinol; 1979 Jul; 15(1):29-40. PubMed ID: 90629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parathyroid hormone, 3'5' AMP, Ca++, and renal gluconeogenesis.
    Nagata N; Rasmussen H
    Proc Natl Acad Sci U S A; 1970 Feb; 65(2):368-74. PubMed ID: 4313196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of actinomycin D, cycloheximide and puromycin on hepatic adenosine 3',5'-monophosphate in rats treated with glucagon.
    Tews JK; Harper AE
    Biochem Pharmacol; 1974 Jun; 23(12):1777-9. PubMed ID: 4366541
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.