These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 4338585)

  • 1. Effect of dibutyryladenosine 3':5'-cyclic monophosphate on growth and differentiation in Caulobacter crescentus.
    Shapiro L; Agabian-Keshishian N; Hirsch A; Rosen OM
    Proc Natl Acad Sci U S A; 1972 May; 69(5):1225-9. PubMed ID: 4338585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of carbon source and the role of cyclic adenosine 3',5'-monophosphate on the Caulobacter cell cycle.
    Kurn N; Shapiro L; Agabian N
    J Bacteriol; 1977 Sep; 131(3):951-9. PubMed ID: 197060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catabolite repression in Streptomyces venezuelae. Induction of beta-galactosidase, chloramphenicol production, and intracellular cyclic adenosine 3',5'-monophosphate concentrations.
    Chatterjee S; Vining LC
    Can J Microbiol; 1982 Mar; 28(3):311-7. PubMed ID: 6282428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine 3':5'-cyclic monophosphate as mediator of catabolite repression in Escherichia coli.
    Epstein W; Rothman-Denes LB; Hesse J
    Proc Natl Acad Sci U S A; 1975 Jun; 72(6):2300-4. PubMed ID: 166384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic adenosine 3',5'-monophosphate in Escherichia coli.
    Buettner MJ; Spitz E; Rickenberg HV
    J Bacteriol; 1973 Jun; 114(3):1068-73. PubMed ID: 4351386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cyclic nucleotides and nucleoside triphosphates on stalk formation in Caulobacter crescentus.
    Schmidt JM; Samuelson GM
    J Bacteriol; 1972 Oct; 112(1):593-601. PubMed ID: 4116756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine 3':5'-cyclic monophosphate and catabolite repression in Escherichia coli.
    Moses V; Sharp PB
    Biochem J; 1970 Jul; 118(3):481-9. PubMed ID: 4319543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different cyclic adenosine 3',5'-monophosphate requirements for induction of beta-galactosidase and tryptophanase. Effect of osmotic pressure on intracellular cyclic adenosine 3,5-monophosphate concentrations.
    Piovant M; Lazdunski C
    Biochemistry; 1975 May; 14(9):1821-5. PubMed ID: 164897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial differentiation.
    Shapiro L; Agabian-Keshishian N; Bendis I
    Science; 1971 Sep; 173(4000):884-92. PubMed ID: 5572165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of untranslated lactose-specific messenger ribonucleic acid during catabolite repression in Escherichia coli.
    Aboud M; Burger M
    Biochem J; 1971 Apr; 122(2):219-24. PubMed ID: 4330149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. B-galactosidase activity in different toxigenic and nontoxigenic strains of Vibrio cholerae: effect of glucose.
    Chakrabarti MK; Pal SC; Ganguly U
    Microbiologica; 1984 Jan; 7(1):11-9. PubMed ID: 6328224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Regulation of beta-galactosidase synthesis in Escherichia coli by exogenous cyclic 3',5'-adenosine monophosphate].
    Kaliuzhnaia VM; Korobov VP
    Mikrobiologiia; 1991; 60(1):65-70. PubMed ID: 1654499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of glucose and its analogues on the accumulation and release of cyclic adenosine 3',5'-monophosphate in a membrane fraction of Escherichia coli: relation to beta-galactosidase synthesis.
    Seto H; Nagata Y; Maruo B
    J Bacteriol; 1975 May; 122(2):669-75. PubMed ID: 165173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of 3':5'-cyclic GMP derivatives on the formation of Caulobacter surface structures.
    Kurn N; Shapiro L
    Proc Natl Acad Sci U S A; 1976 Sep; 73(9):3303-7. PubMed ID: 184471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of activation of catabolite-sensitive genes: a positive control system.
    Zubay G; Schwartz D; Beckwith J
    Proc Natl Acad Sci U S A; 1970 May; 66(1):104-10. PubMed ID: 4320461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catabolite repression of beta-galactosidase synthesis in Escherichia coli.
    Moses V; Prevost C
    Biochem J; 1966 Aug; 100(2):336-53. PubMed ID: 5338805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic nucleotides in bacteria.
    Peterkofsky A
    Adv Cyclic Nucleotide Res; 1976; 7():1-48. PubMed ID: 188312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite repression and derepression of arylsulfatase synthesis in Klebsiella aerogenes.
    Adachi T; Okamura H; Murooka Y; Harada T
    J Bacteriol; 1974 Nov; 120(2):880-5. PubMed ID: 4376143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cyclic AMP on catabolite repressed bacterial sporogenesis of an anaerobe.
    Emeruwa AC; Hawirko RZ
    Arch Microbiol; 1975 Sep; 105(1):67-71. PubMed ID: 242295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative studies on the carbohydrate-containing membrane components of normal and adenosine 3':5'-cyclic monophosphate-treated Chinese hamster ovary cells.
    Baig MM; Roberts RM
    Biochem J; 1973 May; 134(1):329-39. PubMed ID: 4353087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.