These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 4338887)

  • 1. Ontogeny of bioelectric activity in the spinal cord of the chick embryo and its behavioral implications.
    Provine RR
    Brain Res; 1972 Jun; 41(2):365-78. PubMed ID: 4338887
    [No Abstract]   [Full Text] [Related]  

  • 2. Development of spinal cord bioelectric activity in spinal chick embryos and its behavioral implications.
    Provine RR; Rogers L
    J Neurobiol; 1977 May; 8(3):217-28. PubMed ID: 874478
    [No Abstract]   [Full Text] [Related]  

  • 3. Neural correlates of embryonic motility in the chick.
    Ripley KL; Provine RR
    Brain Res; 1972 Oct; 45(1):127-34. PubMed ID: 5075332
    [No Abstract]   [Full Text] [Related]  

  • 4. Post-episode depression of GABAergic transmission in spinal neurons of the chick embryo.
    Chub N; O'Donovan MJ
    J Neurophysiol; 2001 May; 85(5):2166-76. PubMed ID: 11353031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The emergence of inhibition in the chick embryo spinal cord.
    Stokes BT; Bignall KE
    Brain Res; 1974 Sep; 77(2):231-42. PubMed ID: 4854813
    [No Abstract]   [Full Text] [Related]  

  • 6. Statistical analysis and intersegmental delays reveal possible roles of network depression in the generation of spontaneous activity in the chick embryo spinal cord.
    Tabak J; O'Donovan MJ
    Ann N Y Acad Sci; 1998 Nov; 860():428-31. PubMed ID: 9928330
    [No Abstract]   [Full Text] [Related]  

  • 7. Burst patterns late in chick development and their behavioral implications.
    Stokes B
    Exp Neurol; 1976 Mar; 50(3):641-8. PubMed ID: 1253867
    [No Abstract]   [Full Text] [Related]  

  • 8. ATPase activity in the developing chick spinal cord.
    Alfei L; Venturini B
    Brain Res; 1972 Aug; 43(1):314-5. PubMed ID: 4261985
    [No Abstract]   [Full Text] [Related]  

  • 9. Responses of cholinergic markers to a pre- or a postsynaptic pharmacological blockage in the developing chick embryo spinal cord.
    Thiriet G; Kempf E; Ebel A
    Int J Dev Neurosci; 1988; 6(3):309-16. PubMed ID: 2850720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular recordings from embryonic chick motoneurones in the isolated perfused spinal cord.
    Velumian AA
    Brain Res; 1981 Dec; 229(2):502-6. PubMed ID: 6272942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Rhythmic electrical activity of the isolated spinal cord of the chick embryo].
    Baev KV; Chub NL
    Neirofiziologiia; 1987; 19(4):554-7. PubMed ID: 3658044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nerve cells in culture: studies on spontaneous bioelectric activity.
    Mamoon AM; Schlapfer WT; Gähwiler BH; Tobias CA
    Adv Biol Med Phys; 1977; 16():1-40. PubMed ID: 233193
    [No Abstract]   [Full Text] [Related]  

  • 13. Direct evidence for postsynaptic inhibition in the embryonic chick spinal cord.
    Velumian AA
    Brain Res; 1984 Jun; 316(2):229-39. PubMed ID: 6087995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Stages in the development of interrelations between autogenic and reflex motor mechanisms in the ontogeny of homeotherms].
    Bursian AV
    Usp Fiziol Nauk; 1982; 13(1):109-27. PubMed ID: 7039166
    [No Abstract]   [Full Text] [Related]  

  • 15. [Role of various regions of the spinal cord in generating spontaneous motor activity in the chick embryo].
    Baev KV; Chub NL
    Neirofiziologiia; 1989; 21(1):124-6. PubMed ID: 2725778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of supraspinal input in embryonic motility: a re-examination in the chick.
    Oppenheim RW
    J Comp Neurol; 1975 Mar; 160(1):37-50. PubMed ID: 1112921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The modification of the cyclic activity of the isolated spinal cord in l6- to 20-day-old chick embryos through changes in the Ca2+ and Mg2+ concentrations].
    Chub NL
    Neirofiziologiia; 1991; 23(3):333-8. PubMed ID: 1652699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The central nervous generation of the swimming rhythm in an amphibian embryo [proceedings].
    Kahn JA; Roberts A
    J Physiol; 1978 Apr; 277():20P-21P. PubMed ID: 650521
    [No Abstract]   [Full Text] [Related]  

  • 19. Regular oscillations of synaptic activity in spinal networks in vitro.
    Streit J
    J Neurophysiol; 1993 Sep; 70(3):871-8. PubMed ID: 8229175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Changes in the density of sodium currents in the membranes of spinal cord nerve cells during early stages in the development of the chick embryo].
    Rusin KI; Safronov BV
    Neirofiziologiia; 1987; 19(2):274-8. PubMed ID: 2439931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.