These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 4340184)

  • 1. The structural analysis and enzymic synthesis of a pentasaccharide alpha-limit dextrin formed from amylopectin by Bacillus subtilis alpha-amylase.
    French D; Smith EE; Whelan WJ
    Carbohydr Res; 1972 Apr; 22(1):123-34. PubMed ID: 4340184
    [No Abstract]   [Full Text] [Related]  

  • 2. Observations on the structure of pullulan.
    Catley BJ; Whelan WJ
    Arch Biochem Biophys; 1971 Mar; 143(1):138-42. PubMed ID: 4327233
    [No Abstract]   [Full Text] [Related]  

  • 3. The alpha-amylases as glycosylases, with wider catalytic capacities than envisioned or explained by their representation as hydrolases.
    Hehre EJ; Genghof DS; Okada G
    Arch Biochem Biophys; 1971 Jan; 142(1):382-93. PubMed ID: 4993542
    [No Abstract]   [Full Text] [Related]  

  • 4. Enzymatic determination of structure of singly branched hexaose dextrins formed by liquefying -amylase of Bacillus subtilis.
    Umeki K; Yamamoto T
    J Biochem; 1972 Jul; 72(1):101-9. PubMed ID: 4627053
    [No Abstract]   [Full Text] [Related]  

  • 5. The mechanism of carbohydrase action. 10. Enzymic synthesis and properties of 6-alpha-maltosylglucose.
    French D; Taylor PM; Whelan WJ
    Biochem J; 1964 Mar; 90(3):616-20. PubMed ID: 4284175
    [No Abstract]   [Full Text] [Related]  

  • 6. Pattern of action of the amylase and the cyclodextrinase of Bacillus macerans.
    DePinto JA; Campbell LL
    Arch Biochem Biophys; 1968 Apr; 125(1):253-8. PubMed ID: 5649518
    [No Abstract]   [Full Text] [Related]  

  • 7. Configurational specificity: unappreciated key to understanding enzymic reversions and de novo glycosidic bond synthesis. I. Reversal of hydrolysis by alpha-, beta- and glucoamylases with donors of correct anomeric form.
    Hehre EJ; Okada G; Genghof DS
    Arch Biochem Biophys; 1969 Dec; 135(1):74-89. PubMed ID: 5391475
    [No Abstract]   [Full Text] [Related]  

  • 8. Subsite mapping of enzymes. Studies on Bacillus subtilis amylase.
    Thoma JA; Brothers C; Spradlin J
    Biochemistry; 1970 Apr; 9(8):1768-75. PubMed ID: 4985698
    [No Abstract]   [Full Text] [Related]  

  • 9. Enzymic explorations of the structures of starch and glycogen.
    Whelan WJ
    Biochem J; 1971 May; 122(5):609-22. PubMed ID: 5001952
    [No Abstract]   [Full Text] [Related]  

  • 10. Substituent effect on the hydrolyses of phenyl -maltosides catalyzed by saccharifying -amylase from Bacillus subtilis.
    Suetsugu N; Hiromi K; Ono S
    J Biochem; 1971 Oct; 70(4):595-601. PubMed ID: 5002615
    [No Abstract]   [Full Text] [Related]  

  • 11. Kinetics and mechanism of hydrolysis of phenyl alpha-maltoside by saccharifying alpha-amylase of Bacillus subtilis. I. Formation of maltotriose in the course of hydrolysis.
    Yoshida H; Hiromi K; Ono S
    J Biochem; 1967 Oct; 62(4):439-46. PubMed ID: 4968078
    [No Abstract]   [Full Text] [Related]  

  • 12. Water-insolubilisation of glycoside hydrolases with cross-linked poly(acryloylaminoacetaldehyde dimethyl acetal) (Enzacryl Polyacetal).
    Epton R; McLaren JV; Thomas TH
    Carbohydr Res; 1972 May; 22(2):301-6. PubMed ID: 4625874
    [No Abstract]   [Full Text] [Related]  

  • 13. Preparation of a new fluorogenic substrate of alpha-amylases and a simple alpha-amylase assay by HPLC.
    Omichi K; Ikenaka T
    J Biochem; 1983 Apr; 93(4):1055-60. PubMed ID: 6190796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of chemical modification by N-bromosuccinimide of saccharifying alpha-amylase from Bacillus subtilis on various substrates.
    Fujimori H; Onishi M; Hiromi K
    J Biochem; 1974 Apr; 75(4):767-77. PubMed ID: 4211156
    [No Abstract]   [Full Text] [Related]  

  • 15. Structures of branched dextrins produced by saccharifying -amylase of Bacillus subtilis.
    Umeki K; Yamamoto T
    J Biochem; 1972 Nov; 72(5):1219-26. PubMed ID: 4630785
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies on dextrans and destranases. IX. Dextrans elaborated by cariogenic organisms.
    Sidebotham RL; Weigel H; Bowen WH
    Carbohydr Res; 1971 Sep; 19(2):151-9. PubMed ID: 4339591
    [No Abstract]   [Full Text] [Related]  

  • 17. Difference spectrophotometric study of interaction between maltose and saccharifying alpha-amylase from Bacillus subtilis.
    Onishi M
    J Biochem; 1970 Dec; 68(6):933-6. PubMed ID: 4993290
    [No Abstract]   [Full Text] [Related]  

  • 18. Kinetics and mechanism of transfer action of saccharifying alpha-amylase of Bacillus subtilis. Maltose--phenyl alpha-glucoside system.
    Yoshida H; Hiromi K; Ono S
    J Biochem; 1969 Aug; 66(2):183-90. PubMed ID: 4981458
    [No Abstract]   [Full Text] [Related]  

  • 19. A novel method for the action patterns and the differentiation of alpha-1,4-glucan hydrolases.
    Pazur JH; Okada S
    J Biol Chem; 1966 Sep; 241(18):4146-51. PubMed ID: 4958910
    [No Abstract]   [Full Text] [Related]  

  • 20. Structures of multi-branched dextrins produced by saccharifyiing alpha-amylase from starch.
    Umeki K; Yamamoto T
    J Biochem; 1975 Nov; 78(5):897-903. PubMed ID: 814118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.