These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Thryoid control over biomembranes. Rat liver mitochondrial inner membranes. Ida Chen YD; Hoch FL Arch Biochem Biophys; 1977 Jun; 181(2):470-83. PubMed ID: 143239 [No Abstract] [Full Text] [Related]
6. Protein-bound sulfhydryl groups and thiolesters in mitochondria and submitochondrial particles and their relationships to oxidative phosphorylation. Chude O; Boyer PD Arch Biochem Biophys; 1974 Feb; 160(2):366-71. PubMed ID: 4208772 [No Abstract] [Full Text] [Related]
7. Studies of the energy-transfer system of submitochondrial particles. 2. Effects of oligomycin and aurovertin. Lee C; Ernster L Eur J Biochem; 1968 Feb; 3(4):391-400. PubMed ID: 4296030 [No Abstract] [Full Text] [Related]
8. Transmembrane electrochemical H+-potential as a convertible energy source for the living cell. Skulachev VP FEBS Lett; 1977 Feb; 74(1):1-9. PubMed ID: 14031 [No Abstract] [Full Text] [Related]
9. Effect of aurovertin on energy-linked processes related to oxidative phosphorylation. Lenaz G Biochem Biophys Res Commun; 1965 Oct; 21(2):170-5. PubMed ID: 4286024 [No Abstract] [Full Text] [Related]
10. The nature of electron transfer and energy coupling reactions. Chance B FEBS Lett; 1972 Jun; 23(1):3-20. PubMed ID: 4343618 [No Abstract] [Full Text] [Related]
11. A complex of mitochondrial factor A and a new factor involved in oxidative phosphorylation. Sani BP; Lam KW; Sanadi DR Biochem Biophys Res Commun; 1970 May; 39(3):444-9. PubMed ID: 4316208 [No Abstract] [Full Text] [Related]
12. Involvement of thiol function in the activity of energy transfer factor D of mitochondrial oxidative phosphorylation. Sani BP; Sanadi DR Arch Biochem Biophys; 1971 Nov; 147(1):351-2. PubMed ID: 4329865 [No Abstract] [Full Text] [Related]
13. Mitochondrial particles resolved for ion translocation. I. Preparation and properties of a particle coupled only at phosphorylation site 3 of the electron transfer chain. Penniston JT; Vande Zande H; Green DE Arch Biochem Biophys; 1966 Mar; 113(3):507-11. PubMed ID: 4287663 [No Abstract] [Full Text] [Related]
14. A general theory of ATP synthesis and utilization. Ji S Ann N Y Acad Sci; 1974 Feb; 227():211-26. PubMed ID: 4524335 [No Abstract] [Full Text] [Related]
15. Thermodynamic relationships in mitochondrial oxidative phosphorylation. Wilson DF; EreciĆska M; Dutton PL Annu Rev Biophys Bioeng; 1974; 3(0):203-30. PubMed ID: 4153883 [No Abstract] [Full Text] [Related]
16. A theory of respiratory chain oxidative phosphorylation. Falcone AB Proc Natl Acad Sci U S A; 1966 Sep; 56(3):1043-6. PubMed ID: 4291223 [No Abstract] [Full Text] [Related]
17. Control of cell metabolism at the mitochondrial level. Ernster L Fed Proc; 1965; 24(5):1222-36. PubMed ID: 4284471 [No Abstract] [Full Text] [Related]
18. On the functional proton current pathway of electron transport phosphorylation. An electrodic view. Kell DB Biochim Biophys Acta; 1979 Jul; 549(1):55-99. PubMed ID: 38839 [No Abstract] [Full Text] [Related]
19. The molecular organization of mitochondrial membranes. Lehninger AL Adv Cytopharmacol; 1971 May; 1():199-208. PubMed ID: 4950315 [No Abstract] [Full Text] [Related]
20. Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. Bakeeva LE; Grinius LL; Jasaitis AA; Kuliene VV; Levitsky DO; Liberman EA; Severina II; Skulachev VP Biochim Biophys Acta; 1970 Aug; 216(1):13-21. PubMed ID: 4250571 [No Abstract] [Full Text] [Related] [Next] [New Search]