These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 4341013)

  • 1. Mitochondrial lesions in reversible erythropoietic depression due to chloramphenicol.
    Firkin FC
    J Clin Invest; 1972 Aug; 51(8):2085-92. PubMed ID: 4341013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of regulation of erythropoiesis during hemolytic anemia.
    Zyuz'kov GN; Abramova EV; Dygai AM; Gol'dberg ED
    Bull Exp Biol Med; 2004 Oct; 138(4):334-7. PubMed ID: 15665937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloramphenicol-induced erythroid suppression and bone marrow ferrochelatase activity in dogs.
    Manyan DR; Arimura GK; Yunis AA
    J Lab Clin Med; 1972 Jan; 79(1):137-44. PubMed ID: 5007558
    [No Abstract]   [Full Text] [Related]  

  • 4. Alterations in bone and erythropoiesis in hemolytic anemia: comparative study in bled, phenylhydrazine-treated and Plasmodium-infected mice.
    Moreau R; Tshikudi Malu D; Dumais M; Dalko E; Gaudreault V; Roméro H; Martineau C; Kevorkova O; Dardon JS; Dodd EL; Bohle DS; Scorza T
    PLoS One; 2012; 7(9):e46101. PubMed ID: 23029401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [On the inhibitory effect of chloramphenicol on mitochondrial protein synthesis as a possible cause of its selective toxic side effects (author's transl)].
    Summ HD; Draeger E; von Wasielewski E
    Arzneimittelforschung; 1976; 26(1):28-32. PubMed ID: 947169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloramphenicol-induced bone marrow suppression.
    Yunis AA
    Semin Hematol; 1973 Jul; 10(3):225-34. PubMed ID: 4577646
    [No Abstract]   [Full Text] [Related]  

  • 7. Chloramphenicol and bone marrow mitochondria.
    Martelo OJ; Manyan DR; Smith US; Yunis AA
    J Lab Clin Med; 1969 Dec; 74(6):927-40. PubMed ID: 5359665
    [No Abstract]   [Full Text] [Related]  

  • 8. Mitochondrial metabolism in normal, myeloid, and erythroid hyperplastic rabbit bone marrow: effect of chloramphenicol.
    Abou-Khalil S; Salem Z; Yunis AA
    Am J Hematol; 1980; 8(1):71-9. PubMed ID: 7395864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STUDIES ON ERYTHROPOIESIS. I. STUDIES ON CELL SIZE OF ERYTHROID CELLS FROM ANEMIC ANIMAL.
    SHIBATA T
    Acta Med Okayama (1952); 1964 Jun; 18():119-25. PubMed ID: 14222355
    [No Abstract]   [Full Text] [Related]  

  • 10. EFFECT OF ERYTHROPOIETIC STIMULATION ON MARROW DISTRIBUTION IN MAN, RABBIT AND RAT AS SHOWN WITH FE59 AND FE52. UCRL-11184.
    VANDYKE D; ANGER HO; POLLYCOVE M
    UCRL US At Energy Comm; 1963; 72():6-19. PubMed ID: 24547183
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparative effect of chloramphenicol and thiamphenicol on DNA and mitochondrial protein synthesis in mammalian cells.
    Yunis AA; Manyan DR; Arimura GK
    J Lab Clin Med; 1973 May; 81(5):713-8. PubMed ID: 4698658
    [No Abstract]   [Full Text] [Related]  

  • 12. Increased erythropoiesis and 2'5'-A polymerase activity in the marrow and spleen of phenylhydrazine-injected rats.
    Orlic D; Wu JM; Carmichael RD; Quaini F; Kobylack M; Gordon AS
    Exp Hematol; 1982 May; 10(5):478-85. PubMed ID: 6284534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial biogenesis in cultured animal cells. I. Effect of chloramphenicol on morphology and mitochondrial respiratory enzymes.
    Lipton JH; McMurray WC
    Biochim Biophys Acta; 1977 Aug; 477(3):264-72. PubMed ID: 195616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of the mitochondrial genome in HeLa cells. IX. Effect of inhibition of mitochondrial protein synthesis on mitochondrial formation.
    Storrie B; Attardi G
    J Cell Biol; 1973 Mar; 56(3):819-31. PubMed ID: 4347209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of mass bloodtransfusion on erythroid cell differentiation in the anemic rabbit. I. An evolutional change in the cell specialization process.
    Takebayashi J
    Acta Med Okayama (1952); 1967 Oct; 21(5):251-65. PubMed ID: 4232097
    [No Abstract]   [Full Text] [Related]  

  • 16. Linezolid-induced dyserythropoiesis: chloramphenicol toxicity revisited.
    Dawson MA; Davis A; Elliott P; Cole-Sinclair M
    Intern Med J; 2005 Oct; 35(10):626-8. PubMed ID: 16207263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative studies on mitochondrial development in yeasts. 3. Growth-phasic effects of antibiotics on mitochondrial differentiation in Candida.
    Yu RS; Stewart PR
    Cytobios; 1974; 9(36):175-92. PubMed ID: 4368519
    [No Abstract]   [Full Text] [Related]  

  • 18. In vitro evidence for genetically determined variations in marrow erythroid cell sensitivity to chloramphenicol.
    Miller AM; Arimura GK; Gross MA; Yunis AA
    Exp Hematol; 1978 May; 6(5):455-60. PubMed ID: 306929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Failure of phenylalanine to reverse chloramphenicol-induced erythropoietic suppression.
    Greenberg MS; Reed I; Chikkappa G
    Am J Med Sci; 1966 Apr; 251(4):405-8. PubMed ID: 5910226
    [No Abstract]   [Full Text] [Related]  

  • 20. The effect of erythropoietin and erythroid hyperplasia on the response of rabbit bone marrow to actinomycin D.
    Hershko C; Izak G; Schwartz R
    Isr J Med Sci; 1971; 7(7):910-8. PubMed ID: 5098379
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.