BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 4341351)

  • 1. The role of oxidized nicotinamide adenine dinucleotide in fluoride inhibition of active sodium transport in human erythrocytes.
    Millman MS; Omachi A
    J Gen Physiol; 1972 Sep; 60(3):337-50. PubMed ID: 4341351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy metabolism in human erythrocytes. I. Effects of sodium fluoride.
    Feig SA; Shohet SB; Nathan DG
    J Clin Invest; 1971 Aug; 50(8):1731-7. PubMed ID: 4329003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired nicotinamide adenine dinucleotide synthesis in pyruvate kinase-deficient human erythrocytes: a mechanism for decreased total NAD content and a possible secondary cause of hemolysis.
    Zerez CR; Tanaka KR
    Blood; 1987 Apr; 69(4):999-1005. PubMed ID: 3828536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of membrane phosphoglycerate kinase in the control of glycolytic rate by active cation transport in human red blood cells.
    Parker JC; Hoffman JF
    J Gen Physiol; 1967 Mar; 50(4):893-916. PubMed ID: 4291916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes.
    Ghashghaeinia M; Köberle M; Mrowietz U; Bernhardt I
    Cell Cycle; 2019 Jun; 18(12):1316-1334. PubMed ID: 31154896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sodium fluoride on glycolysis in human erythrocytes and Ehrlich ascites tumour cells in vitro.
    Gumińska M; Sterkowicz J
    Acta Biochim Pol; 1976; 23(4):285-91. PubMed ID: 1035019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the mechanism of inhibition of the red cell metabolism by cardiac glycosides.
    Okonkwo PO; Longenecker G; Askari A
    J Pharmacol Exp Ther; 1975 Jul; 194(1):244-54. PubMed ID: 125326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy metabolism in human erythrocytes: the role of phosphoglycerate kinase in cation transport.
    Segel GB; Feig SA; Glader BE; Muller A; Dutcher P; Nathan DG
    Blood; 1975 Aug; 46(2):271-8. PubMed ID: 166715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ouabain-uninhibited sodium transport in human erythrocytes. Evidence against a second pump.
    Dunn MJ
    J Clin Invest; 1973 Mar; 52(3):658-70. PubMed ID: 4265384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes.
    Mercer RW; Dunham PB
    J Gen Physiol; 1981 Nov; 78(5):547-68. PubMed ID: 6273495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac Na+, K+-adenosine triphosphatase inhibition by ouabain and myocardial sodium: a computer simulation.
    Akera T; Bennett RT; Olgaard MK; Brody TM
    J Pharmacol Exp Ther; 1976 Nov; 199(2):287-97. PubMed ID: 135837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of glycolysis in the erythrocyte: role of the lactate/pyruvate and NAD/NADH ratios.
    Tilton WM; Seaman C; Carriero D; Piomelli S
    J Lab Clin Med; 1991 Aug; 118(2):146-52. PubMed ID: 1856577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of external sodium ions on the sodium pump in erythrocytes.
    Priestland RN; Whittam R
    Biochem J; 1968 Sep; 109(3):369-74. PubMed ID: 4234831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ouabain inhibition of gill Na-K-ATPase: relationship to active chloride transport.
    Silva P; Solomon R; Spokes K; Epstein F
    J Exp Zool; 1977 Mar; 199(3):419-26. PubMed ID: 139454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase works as an arsenate reductase in human red blood cells and rat liver cytosol.
    Gregus Z; Németi B
    Toxicol Sci; 2005 Jun; 85(2):859-69. PubMed ID: 15788719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac sodium, potassium-adenosine triphosphatase as a possible site of adriamycin-induced cardiotoxicity.
    Solomonson LP; Halabrin PR
    Cancer Res; 1981 Feb; 41(2):570-2. PubMed ID: 6256069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ouabain on catecholamine-stimulated sodium transport in turkey erythrocytes.
    Gardner JD; Klaeveman HL; Bilezikian JP; Aurbach GD
    J Biol Chem; 1974 Jan; 249(2):516-20. PubMed ID: 4358556
    [No Abstract]   [Full Text] [Related]  

  • 18. Membrane mediated link between ion transport and metabolism in human red cells.
    Fossel ET; Solomon AK
    Biochim Biophys Acta; 1977 Jan; 464(1):82-92. PubMed ID: 831795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium transport and metabolism by erythrocytes of the dogfish shark.
    Bricker NS; Guerra L; Klahr S; Beauman W; Marchena C
    Am J Physiol; 1968 Aug; 215(2):383-8. PubMed ID: 5665172
    [No Abstract]   [Full Text] [Related]  

  • 20. Relationship between fluid transport and in situ inhibition of Na(+)-K+ adenosine triphosphatase in corneal endothelium.
    Riley MV; Winkler BS; Peters MI; Czajkowski CA
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):560-7. PubMed ID: 8113007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.