These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 434156)

  • 1. Measurement of renal cortical and medullary blood flow by laser-Doppler spectroscopy in the rat.
    Stern MD; Bowen PD; Parma R; Osgood RW; Bowman RL; Stein JH
    Am J Physiol; 1979 Jan; 236(1):F80-7. PubMed ID: 434156
    [No Abstract]   [Full Text] [Related]  

  • 2. Disparate roles of AT2 receptors in the renal cortical and medullary circulations of anesthetized rabbits.
    Duke LM; Eppel GA; Widdop RE; Evans RG
    Hypertension; 2003 Aug; 42(2):200-5. PubMed ID: 12847115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue PH2 measurement for continuous estimation of blood flow changes in rat kidney cortex and medulla.
    Parekh N; Sadowski J; Steinhausen M
    Pflugers Arch; 1991 Nov; 419(5):450-3. PubMed ID: 1775365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opposed effects of prostaglandin E2 on perfusion of rat renal cortex and medulla: interactions with the renin-angiotensin system.
    Badzynska B; Sadowski J
    Exp Physiol; 2008 Dec; 93(12):1292-302. PubMed ID: 18586855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of angiotensin on renal cortical and papillary blood flows measured by laser-Doppler flowmetry.
    Nobes MS; Harris PJ; Yamada H; Mendelsohn FA
    Am J Physiol; 1991 Dec; 261(6 Pt 2):F998-1006. PubMed ID: 1721499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous measurement of tissue blood flow by laser-Doppler spectroscopy.
    Stern MD; Lappe DL; Bowen PD; Chimosky JE; Holloway GA; Keiser HR; Bowman RL
    Am J Physiol; 1977 Apr; 232(4):H441-8. PubMed ID: 556582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of the action of angiotensin II on perfusion through the cortex and papilla of the rat kidney.
    Huang CL; Davis G; Johns EJ
    Exp Physiol; 1991 Sep; 76(5):787-98. PubMed ID: 1742016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of responses of renal cortical and medullary blood flow to vasoconstrictors in conscious rabbits.
    Evans RG; Madden AC; Denton KM
    Acta Physiol Scand; 2000 Aug; 169(4):297-308. PubMed ID: 10951121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific features and roles of renal circulation: angiotensin II revisited.
    Sadowski J; BadzyƄska B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 11():169-78. PubMed ID: 17244948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between renal perfusion pressure and blood flow in different regions of the kidney.
    Mattson DL; Lu S; Roman RJ; Cowley AW
    Am J Physiol; 1993 Mar; 264(3 Pt 2):R578-83. PubMed ID: 8457011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of iotrolan on renal cortical and outer medullary blood flow in the rat.
    Liss P; Nygren A; Hansell P
    Acad Radiol; 1998 Apr; 5 Suppl 1():S123-6. PubMed ID: 9561061
    [No Abstract]   [Full Text] [Related]  

  • 13. Simultaneous measurement of renal blood flow of the outer and inner cortex by laser-Doppler flowmetry in anesthetized dogs: effect of enalapril diacid.
    Noguchi K; Ojiri Y; Chibana T; Sakanashi M
    Arch Int Pharmacodyn Ther; 1992; 320():68-80. PubMed ID: 1300943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Centrogenic arterial hypertension and local renal blood flow: evidence of nervous regulation of medullary circulation].
    Ganich IuIa; Suchkov VV; Kreer AKh; Keler M
    Fiziol Zh SSSR Im I M Sechenova; 1984 Jan; 70(1):48-55. PubMed ID: 6698251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prostaglandin E2 concentrations in rat renal cortical and medullary interstitium: effect of volume expansion and renal perfusion pressure.
    Kompanowska-Jezierska E; Berndt TJ; Knox FG
    Acta Physiol Scand; 2001 Aug; 172(4):287-9. PubMed ID: 11531650
    [No Abstract]   [Full Text] [Related]  

  • 16. Influence of verapamil on regional renal blood flow: a study using multichannel laser-Doppler flowmetry.
    Hansell P; Nygren A; Ueda J
    Acta Physiol Scand; 1990 May; 139(1):15-20. PubMed ID: 2192538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of chronic renal medullary nitric oxide inhibition on blood pressure.
    Mattson DL; Lu S; Nakanishi K; Papanek PE; Cowley AW
    Am J Physiol; 1994 May; 266(5 Pt 2):H1918-26. PubMed ID: 8203591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AT1 receptor-activated signaling mediates angiotensin IV-induced renal cortical vasoconstriction in rats.
    Li XC; Campbell DJ; Ohishi M; Yuan S; Zhuo JL
    Am J Physiol Renal Physiol; 2006 May; 290(5):F1024-33. PubMed ID: 16380463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue blood flow in brain, liver, renal cortex, and renal medulla in experimental hemorrhagic shock.
    Hirasawa H; Odaka M; Tabata Y; Kobayashi H; Sato H
    Crit Care Med; 1977; 5(3):141-5. PubMed ID: 862408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.