These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 4342601)

  • 21. The configuration of the 1,2-dihydroxy-1,2-dihydronaphthalene formed in the bacterial metabolism of naphthalene.
    Catterall FA; Murray K; Williams PA
    Biochim Biophys Acta; 1971 May; 237(2):361-4. PubMed ID: 4328397
    [No Abstract]   [Full Text] [Related]  

  • 22. Bacterial attack on phenolic ethers. Preliminary studies on systems transporting electrons to the substrate binding components in bacterial O-dealkylases.
    Cartwright NJ; Broadbent DA
    Microbios; 1974 Apr; 10(38):87-96. PubMed ID: 4211829
    [No Abstract]   [Full Text] [Related]  

  • 23. [Dehydrogenase activity of Pseudomonas melochlora polyploid culture].
    Imsenecki AA; Zhil'tsova GK
    Mikrobiologiia; 1972; 41(5):770-2. PubMed ID: 4643922
    [No Abstract]   [Full Text] [Related]  

  • 24. Quinate metabolism in Pseudomonas aeruginosa.
    Ingledew WM; Tai CC
    Can J Microbiol; 1972 Dec; 18(12):1817-24. PubMed ID: 4630966
    [No Abstract]   [Full Text] [Related]  

  • 25. Regulation of synthesis of early enzymes of p-hydroxybenzoate pathway in Pseudomonas putida.
    Hosokawa K
    J Biol Chem; 1970 Oct; 245(20):5304-8. PubMed ID: 5469168
    [No Abstract]   [Full Text] [Related]  

  • 26. A 4-methoxybenzoate O-demethylase from Pseudomonas putida. A new type of monooxygenase system.
    Bernhardt FH; Pachowsky H; Staudinger H
    Eur J Biochem; 1975 Sep; 57(1):241-56. PubMed ID: 240720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interactions of substrates with a purified 4-methoxybenzoate monooxygenase system (O-demethylating) from Pseudomonas putida.
    Bernhardt FH; Erdin N; Staudinger H; Ullrich V
    Eur J Biochem; 1973 May; 35(1):126-34. PubMed ID: 4351526
    [No Abstract]   [Full Text] [Related]  

  • 28. Metabolism of resorcinylic compounds by bacteria: orcinol pathway in Pseudomonas putida.
    Chapman PJ; Ribbons DW
    J Bacteriol; 1976 Mar; 125(3):975-84. PubMed ID: 1254564
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The regulation of naphthalene metabolism in pseudomonads.
    Shamsuzzaman KM; Barnsley EA
    Biochem Biophys Res Commun; 1974 Sep; 60(2):582-9. PubMed ID: 4423716
    [No Abstract]   [Full Text] [Related]  

  • 30. The isolation and characterization of malate-lactate transhydrogenase from Micrococcus lactilyticus.
    Allen SH
    J Biol Chem; 1966 Nov; 241(22):5266-75. PubMed ID: 4289051
    [No Abstract]   [Full Text] [Related]  

  • 31. Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida.
    Chapman PJ; Ribbons DW
    J Bacteriol; 1976 Mar; 125(3):985-98. PubMed ID: 942589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification and some properties of two isofunctional juglone hydroxylases from Pseudomonas putida J1.
    Rettenmaier H; Lingens F
    Biol Chem Hoppe Seyler; 1985 Jul; 366(7):637-46. PubMed ID: 4041238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacterial attack on phenolic ethers. Resolution of a Nocardia O-demethylase and purification of a cytochrome P 450 component.
    Broadbent DA; Cartwright NJ
    Microbios; 1971 Jul; 4(13):7-12. PubMed ID: 4147906
    [No Abstract]   [Full Text] [Related]  

  • 34. [On the enzymatic degradation of DL-4-hydroxy-3-methoxy-phenylglyoxylic acid (vanilloylformic acid) to vanillic acid].
    Brisse B; Dirscherl W
    Hoppe Seylers Z Physiol Chem; 1969 Jun; 350(6):787-90. PubMed ID: 4389744
    [No Abstract]   [Full Text] [Related]  

  • 35. Mixed carbon source effect in the phenazine-alpha-carboxylic acid synthesis and the aromatic pathway in Pseudomonas spp.
    Korth H
    Arch Microbiol; 1974 May; 97(3):245-52. PubMed ID: 4211209
    [No Abstract]   [Full Text] [Related]  

  • 36. Tartaric acid metabolism. 3. The formation of glyceric acid.
    Kohn LD; Jakoby WB
    J Biol Chem; 1968 May; 243(10):2465-71. PubMed ID: 4297259
    [No Abstract]   [Full Text] [Related]  

  • 37. Separation of soluble denitrifying enzymes and cytochromes from Pseudomonas perfectomarinus.
    Cox CD; Payne WJ
    Can J Microbiol; 1973 Jul; 19(7):861-72. PubMed ID: 4146985
    [No Abstract]   [Full Text] [Related]  

  • 38. [Some aspects of energy metabolism in causative agents of aerobic septicemia of different virulence].
    Velianov D; Popov Ch; Kaloianov I
    Zh Mikrobiol Epidemiol Immunobiol; 1971; 48(6):131-5. PubMed ID: 4998904
    [No Abstract]   [Full Text] [Related]  

  • 39. Initial steps in the degradation of n-alkane-1-sulphonates by Pseudomonas.
    Thysse GJ; Wanders TH
    Antonie Van Leeuwenhoek; 1974; 40(1):25-37. PubMed ID: 4363484
    [No Abstract]   [Full Text] [Related]  

  • 40. A mutant of Pseudomonas putida with altered regulation of the enzymes for degradation of phenol and cresols.
    Wigmore GJ; Bayly RC
    Biochem Biophys Res Commun; 1974 Sep; 60(1):48-55. PubMed ID: 4371622
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.