These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 4342716)
21. Electrostatic interactions in cytochrome c. The role of interactions between residues 13 and 90 and residues 79 and 47 in stabilizing the heme crevice structure. Osheroff N; Borden D; Koppenol WH; Margoliash E J Biol Chem; 1980 Feb; 255(4):1689-97. PubMed ID: 6243646 [No Abstract] [Full Text] [Related]
22. The reduction mechanism of ferricytochrome c. Wilting J; Braams R; Nauta H; van Buuren KJ Biochim Biophys Acta; 1972 Dec; 283(3):543-7. PubMed ID: 4346391 [No Abstract] [Full Text] [Related]
23. 1H-NMR studies of structural homologies between the heme environments in horse cytochrome c and in cytochrome c-552 from Euglena gracilis. Keller RM; Wüthrich K Biochim Biophys Acta; 1981 Apr; 668(2):307-20. PubMed ID: 6261826 [TBL] [Abstract][Full Text] [Related]
24. Iron ligands in different forms of ferricytochrome c: the 620-nm band as a probe. Kaminsky LS; Byrne MJ; Davison AJ Arch Biochem Biophys; 1972 Jun; 150(2):355-61. PubMed ID: 4557887 [No Abstract] [Full Text] [Related]
25. Location of heme a in cytochrome a. II. Solvent perturbation spectroscopy of ferricytochrome a. Yamamoto T; Orii Y J Biochem; 1973 Sep; 74(3):473-9. PubMed ID: 4356992 [No Abstract] [Full Text] [Related]
26. Reduction of ferricytochrome c by dithionite ion: electron transfer by parallel adjacent and remote pathways. Creutz C; Sutin N Proc Natl Acad Sci U S A; 1973 Jun; 70(6):1701-3. PubMed ID: 4352650 [TBL] [Abstract][Full Text] [Related]
27. The Trp-59 fluorescence of ferricytochrome c as a sensitive measure of the over-all protein conformation. Tsong TY J Biol Chem; 1974 Mar; 249(6):1988-90. PubMed ID: 4361834 [No Abstract] [Full Text] [Related]
28. Autocatalytic peroxidation of ferrocytochrome c. Mochan E; Degn H Biochim Biophys Acta; 1969; 189(3):354-9. PubMed ID: 5392506 [No Abstract] [Full Text] [Related]
29. Complex formation between methionine and a heme peptide from cytochrome c. Harbury HA; Cronin JR; Fanger MW; Hettinger TP; Murphy AJ; Myer YP; Vinogradov SN Proc Natl Acad Sci U S A; 1965 Dec; 54(6):1658-64. PubMed ID: 5218919 [No Abstract] [Full Text] [Related]
30. Spectroscopic studies on the conformation of cytochrome c and apocytochrome c. Cohen JS; Fisher WR; Schechter AN J Biol Chem; 1974 Feb; 249(4):1113-8. PubMed ID: 4360675 [No Abstract] [Full Text] [Related]
31. Polyamino acid derivatives of mammalian cytochrome c undecapeptide. Wainio WW; Krausz LM; Hillman K Biochem Biophys Res Commun; 1970; 39(6):1134-9. PubMed ID: 5534956 [No Abstract] [Full Text] [Related]
32. The interaction between heme and protein in cytochrome c1. Tervoort MJ; Van Gelder BF Biochim Biophys Acta; 1983 Jan; 722(1):137-43. PubMed ID: 6297567 [TBL] [Abstract][Full Text] [Related]
33. Complexation of iron hexacyanides by cytochrome c. Evidence for electron exchange at the exposed heme edge. Stellwagen E; Cass RD J Biol Chem; 1975 Mar; 250(6):2095-8. PubMed ID: 234955 [TBL] [Abstract][Full Text] [Related]
34. A 19F nuclear magnetic resonance study of the interaction between cytochrome c and cytochrome c peroxidase. Smith MB; Millett F Biochim Biophys Acta; 1980 Nov; 626(1):64-72. PubMed ID: 6257307 [TBL] [Abstract][Full Text] [Related]
35. The electric potential field around cytochrome c and the effect of ionic strength on reaction rates of horse cytochrome c. Koppenol WH; Vroonland CA; Braams R Biochim Biophys Acta; 1978 Sep; 503(3):499-508. PubMed ID: 210807 [TBL] [Abstract][Full Text] [Related]
36. Formation of two alternative complementing structures from cytochrome c heme fragment (residue 1 to 38) and the apoprotein. Parr GR; Hantgan RR; Taniuchi H J Biol Chem; 1978 Aug; 253(15):5381-8. PubMed ID: 209038 [No Abstract] [Full Text] [Related]
37. [The effect of reversed micelles of cetyltrimethylammonium bromide on equilibrium constants and kinetics of oxidation-reduction reactions with the participation of cytochrome c]. Iushchishina AN; Genkin MV; Koroteev SV; Malievskiĭ AD; Davydov RM Mol Biol (Mosk); 1988; 22(6):1650-7. PubMed ID: 2855257 [TBL] [Abstract][Full Text] [Related]
38. Individual assignments of the heme resonances in the 360 MHz 1H NMR spectra of cytochrome c-557 from Crithidia oncopelti. Keller RM; Picot D; Wüthrich K Biochim Biophys Acta; 1979 Oct; 580(2):259-65. PubMed ID: 229911 [TBL] [Abstract][Full Text] [Related]
39. Relation of the structure and function of ferricytochrome c bound to the phosphoprotein phosvitin. Yoshimura T; Matsushima A; Aki K Biochim Biophys Acta; 1980 Sep; 625(1):100-8. PubMed ID: 6251902 [TBL] [Abstract][Full Text] [Related]
40. Mechanism of the reaction of hydrated electrons with ferrocytochrome c. Butler J; De Kok J; De Weille JR; Koppenol WH; Braams R Biochim Biophys Acta; 1977 Feb; 459(2):207-15. PubMed ID: 13826 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]