BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 4343722)

  • 1. Mapping active sites of phosphoryl-transferring enzymes by magnetic resonance methods.
    Cohn M; Leigh JS; Reed GH
    Cold Spring Harb Symp Quant Biol; 1972; 36():533-40. PubMed ID: 4343722
    [No Abstract]   [Full Text] [Related]  

  • 2. Magnetic resonance studies of specificity in binding and catalysis of phosphotransferases.
    Cohn M
    Ciba Found Symp; 1975; (31):87-104. PubMed ID: 168046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron paramagnetic resonance and proton relaxation rate studies of spin-labeled creatine kinase and its complexes.
    Taylor JS; McLaughlin A; Cohn M
    J Biol Chem; 1971 Oct; 246(19):6029-36. PubMed ID: 4330064
    [No Abstract]   [Full Text] [Related]  

  • 4. Magnetic resonance studies of the interaction of spin-labeled creatine kinase with paramagnetic manganese-substrate complexes.
    Cohn M; Diefenbach H; Taylor JS
    J Biol Chem; 1971 Oct; 246(19):6037-42. PubMed ID: 4330065
    [No Abstract]   [Full Text] [Related]  

  • 5. Kinetic and magnetic resonance studies of the interaction of oxalate with pyruvate kinase.
    Reed GH; Morgan SD
    Biochemistry; 1974 Aug; 13(17):3537-41. PubMed ID: 4367426
    [No Abstract]   [Full Text] [Related]  

  • 6. Thallium-205 nuclear magnetic resonance study of pyruvate kinase and its substrates. Evidence for a substrate-induced conformational change.
    Reuben J; Kayne FJ
    J Biol Chem; 1971 Oct; 246(20):6227-34. PubMed ID: 5127427
    [No Abstract]   [Full Text] [Related]  

  • 7. Structural studies of transition state analog complexes of creatine kinase.
    Reed GH; McLaughlin AC
    Ann N Y Acad Sci; 1973 Dec; 222():118-29. PubMed ID: 4361852
    [No Abstract]   [Full Text] [Related]  

  • 8. Structural changes induced by substrates and anions at the active site of creatine kinase. Electron paramagnetic resonance and nuclear magnetic relaxation rate studies of the manganous complexes.
    Reed GH; Cohn M
    J Biol Chem; 1972 May; 247(10):3073-81. PubMed ID: 4337505
    [No Abstract]   [Full Text] [Related]  

  • 9. Electron paramagnetic resonance studies of manganese (II)-pyruvate kinase-substrate complexes.
    Reed GH; Cohn M
    J Biol Chem; 1973 Sep; 248(18):6436-42. PubMed ID: 4354210
    [No Abstract]   [Full Text] [Related]  

  • 10. Muscle pyruvate kinase: interaction with substrates and analogues studied by difference spectroscopy. Comparative studies of the substrate-binding sites of various ATP phosphotransferases.
    Brevet A; Roustan C; Pradel LA; VAN Thoai N
    Eur J Biochem; 1975 Mar; 52(2):345-50. PubMed ID: 170088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of deoxyribonucleoside diphosphates by toluene-treated Escherichia coli cells lacking deoxyribonucleic acid polymerase I.
    Hsieh WT
    Biochim Biophys Acta; 1971 Jun; 240(1):157-61. PubMed ID: 4940154
    [No Abstract]   [Full Text] [Related]  

  • 12. Nuclear magnetic resonance studies of selectively hindered internal motion of substrate analogs at the active site of pyruvate kinase.
    Nowak T; Mildvan AS
    Biochemistry; 1972 Jul; 11(15):2813-8. PubMed ID: 4625313
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of the active site structures of arginine kinase-substrate complexes. Water proton magnetic relaxation rates and electron paramagnetic resonance spectra of manganous-enzyme complexes with substrates and of a transition state analog.
    Buttlaire DH; Cohn M
    J Biol Chem; 1974 Sep; 249(18):5741-8. PubMed ID: 4369851
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on the interaction of ligands with phosphorylase b using a spin-label probe.
    Campbell ID; Dwek RA; Price NC; Radda GK
    Eur J Biochem; 1972 Oct; 30(2):339-47. PubMed ID: 4351439
    [No Abstract]   [Full Text] [Related]  

  • 15. Interaction of manganous ion, substrates, and anions with arginine kinase. Magnetic relaxation rate studies of water protons and kinetic anion effects.
    Buttlaire DH; Cohn M
    J Biol Chem; 1974 Sep; 249(18):5733-40. PubMed ID: 4370118
    [No Abstract]   [Full Text] [Related]  

  • 16. Properties and mechanism of action of creatine kinase from ox smooth muscle. Anion effects compared with pyruvate kinase.
    Focant B; Watts DC
    Biochem J; 1973 Oct; 135(2):265-76. PubMed ID: 4797165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gadolinium asa probe of the alkaline earth and ATP-metal binding sites in pyruvate kinase.
    Valentine KM; Cottam GL
    Arch Biochem Biophys; 1973 Sep; 158(1):346-54. PubMed ID: 4354033
    [No Abstract]   [Full Text] [Related]  

  • 18. Studies on a possible phosphoryl-enzyme intermediate in the catalytic reaction of yeast phosphoglycerate kinase.
    Larsson-Raźnikiewicz M; Schierbeck B
    Biochem Biophys Res Commun; 1974 Apr; 57(3):627-34. PubMed ID: 4363936
    [No Abstract]   [Full Text] [Related]  

  • 19. Nuclear magnetic resonance studies of a ribonuclease-dinucleoside phosphonate complex and their implications for the mechanism of the enzyme.
    Griffin JH; Schechter AN; Cohen JS
    Ann N Y Acad Sci; 1973 Dec; 222():693-708. PubMed ID: 4522440
    [No Abstract]   [Full Text] [Related]  

  • 20. Magnetic resonance studies of enzyme-substrate complexes with paramagnetic probes as illustrated by creatine kinase.
    Cohn M
    Q Rev Biophys; 1970 Feb; 3(1):61-89. PubMed ID: 4314327
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.