These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 4343813)

  • 41. UDP-glucose:glycogen alpha-4-glucosyltransferase I kinase activity of purified muscle protein kinase. Cyclic nucleotide specificity.
    Schlender KK; Wei SH; Villar-Palasi C
    Biochim Biophys Acta; 1969 Nov; 191(2):272-8. PubMed ID: 4311521
    [No Abstract]   [Full Text] [Related]  

  • 42. Nonlinear enzymatic cycling systems: the exponential cycling system. II. Experimental cycling system.
    Kopp LE; Miech RP
    J Biol Chem; 1972 Jun; 247(11):3564-70. PubMed ID: 5063986
    [No Abstract]   [Full Text] [Related]  

  • 43. Kinetics of coupled enzymes. Creatine kinase and myosin A.
    Botts J; Stone MJ
    Biochemistry; 1968 Jul; 7(7):2688-96. PubMed ID: 4298228
    [No Abstract]   [Full Text] [Related]  

  • 44. The role of creatine kinase and arginine kinase in muscle.
    Newsholme EA; Beis I; Leech AR; Zammit VA
    Biochem J; 1978 Jun; 172(3):533-7. PubMed ID: 210761
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioluminescent and fluorometric techniques for determinations of 19 metabolites of ADP/ATP-dependent transformations in energy metabolism in 200 (or 400) mg muscle.
    Feraudi M; Gärtner C; Kolb J; Weicker H
    J Clin Chem Clin Biochem; 1983 Apr; 21(4):193-7. PubMed ID: 6854230
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nucleotide binding to myosin in calcium activated muscle.
    Marston SB; Tregear RT
    Biochim Biophys Acta; 1974 Mar; 333(3):581-4. PubMed ID: 4277060
    [No Abstract]   [Full Text] [Related]  

  • 47. [Adenine nucleotides, NAD + and NADH in skeletal muscles during intensive work and in rest periods].
    Chagovets NR
    Dokl Akad Nauk SSSR; 1972 Nov; 207(3):739-41. PubMed ID: 4345232
    [No Abstract]   [Full Text] [Related]  

  • 48. The difference absorption spectrum of myosin induced by adenosine triphosphate, adenosine diphosphate, and inorganic pyrophosphate.
    Yoshino H; Morita F; Yagi K
    J Biochem; 1972 Feb; 71(2):351-3. PubMed ID: 4335788
    [No Abstract]   [Full Text] [Related]  

  • 49. A fluorescent modification of adenosine triphosphate with activity in enzyme systems: 1,N 6 -ethenoadenosine triphosphate.
    Secrist JA; Barrio JR; Leonard NJ
    Science; 1972 Feb; 175(4022):646-7. PubMed ID: 4257930
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Phosphorylation of actin and troponin from rabbit muscle].
    Pratje E; Heilmeyer LM
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1559. PubMed ID: 4649822
    [No Abstract]   [Full Text] [Related]  

  • 51. The effect of fructose on the stores of energy-rich phosphate in rat jejunum in vivo.
    Lamers JM; Hülsmann WC
    Biochim Biophys Acta; 1973 Jun; 313(1):1-8. PubMed ID: 4745678
    [No Abstract]   [Full Text] [Related]  

  • 52. Two-dimensional transferred nuclear Overhauser effect spectroscopy (TRNOESY) studies of nucleotide conformations in creatine kinase complexes: effects due to weak nonspecific binding.
    Murali N; Jarori GK; Landy SB; Rao BD
    Biochemistry; 1993 Nov; 32(47):12941-8. PubMed ID: 8251518
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of rabbit skeletal muscle adenylate kinase by the transition state analogue, P 1 ,P 4 -di(adenosine-5')tetraphosphate.
    Purich DL; Fromm HJ
    Biochim Biophys Acta; 1972 Aug; 276(2):563-7. PubMed ID: 5068828
    [No Abstract]   [Full Text] [Related]  

  • 54. Investigations of substrate specificity and reaction mechanism of several kinases using chromium(III) adenosine 5'-triphosphate and chromium(III) adenosine 5'-diphosphate.
    Dunaway-Mariano D; Cleland WW
    Biochemistry; 1980 Apr; 19(7):1506-15. PubMed ID: 6248105
    [No Abstract]   [Full Text] [Related]  

  • 55. Is creatine phosphokinase in equilibrium in skeletal muscle?
    Brown TR
    Fed Proc; 1982 Feb; 41(2):174-5. PubMed ID: 7060742
    [No Abstract]   [Full Text] [Related]  

  • 56. Adenosine di-, tri- and tetraphosphopyridoxals modify the same lysyl residue at the ATP-binding site in adenylate kinase.
    Yagami T; Tagaya M; Fukui T
    FEBS Lett; 1988 Mar; 229(2):261-4. PubMed ID: 2831094
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nucleotide binding sites in wild-type creatine kinase and in W227Y mutant probed by photochemical release of nucleotides and infrared difference spectroscopy.
    Raimbault C; Perraut C; Marcillat O; Buchet R; Vial C
    Eur J Biochem; 1997 Dec; 250(3):773-82. PubMed ID: 9461301
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The influence of Mg2+-adenine nucleotide ratios and absolute concentration of Mg2+-adenine nucleotide on the observed velocity of some kinase reactions.
    Garner PS; Rosett T
    FEBS Lett; 1973 Aug; 34(2):243-6. PubMed ID: 4355909
    [No Abstract]   [Full Text] [Related]  

  • 59. Binding of nucleotide to cation-free G-action.
    West JJ
    Biochemistry; 1971 Sep; 10(19):3547-53. PubMed ID: 5004407
    [No Abstract]   [Full Text] [Related]  

  • 60. Kinetic studies of the interaction of pigeon-liver NAD kinase with adenine nucleotides and divalent cations.
    Apps DK; Marsh A
    Eur J Biochem; 1972 Jun; 28(1):12-9. PubMed ID: 4340475
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.