These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Light-induced energy conversion and the inorganic pyrophosphatase reaction in chromatophores from Rhodospirillum rubrum . Baltscheffsky M; Baltscheffsky H; von Stedingk LV Brookhaven Symp Biol; 1966; 19():246-57. PubMed ID: 4226095 [No Abstract] [Full Text] [Related]
3. Reconstitution of highly purified proton-translocating pyrophosphatase from Rhodospirillum rubrum. Shakhov YA; Nyrén P; Baltscheffsky M FEBS Lett; 1982 Sep; 146(1):177-80. PubMed ID: 6128256 [No Abstract] [Full Text] [Related]
4. Surface charge modifications do not affect the hydrolytic activity of membrane-bound pyrophosphatase of Rhodospirillum rubrum. Sosa A; Celis H Biochem Mol Biol Int; 1993 Aug; 30(6):1135-41. PubMed ID: 8220258 [TBL] [Abstract][Full Text] [Related]
5. Specificity of the transhydrogenase factor for chromatophores of Rhodopseudomonas spheroides and Rhodospirillum rubrum. Konings AW; Guillory RJ Biochim Biophys Acta; 1972 Nov; 283(2):334-8. PubMed ID: 4267407 [No Abstract] [Full Text] [Related]
6. Resolution of enzymes catalyzing energy-linked transhydrogenation. IV. Reconstitution of adenosine triphosphate-driven transhydrogenation in depleted chromatophores of Rhodospirillum rubrum by the transhydrogenase factor and a soluble oligomycin-insensitive Mg ++ -adenosine triphosphatase. Konings AW; Guillory RJ J Biol Chem; 1973 Feb; 248(3):1045-50. PubMed ID: 4630853 [No Abstract] [Full Text] [Related]
7. ATP synthesis and hydrolysis by a hybrid system reconstituted from the beta-subunit of Escherichia coli F1-ATPase and beta-less chromatophores of Rhodospirillum rubrum. Gromet-Elhanan Z; Khananshvili D; Weiss S; Kanazawa H; Futai M J Biol Chem; 1985 Oct; 260(23):12635-40. PubMed ID: 2864345 [TBL] [Abstract][Full Text] [Related]
8. Studies on the light-dependent synthesis of inorganic pyrophosphate by Rhodospirillum rubrum chromatophores. Guillory RJ; Fisher RR Biochem J; 1972 Sep; 129(2):571-81. PubMed ID: 4345276 [TBL] [Abstract][Full Text] [Related]
9. Energy-linked reactions in photosynthetic bacteria. IX. Pi-PPi exchange in Rhodospirillum rubrum. Keister DL; Raveed NJ J Biol Chem; 1974 Oct; 249(20):6454-8. PubMed ID: 4371026 [No Abstract] [Full Text] [Related]
10. Formation and decomposition of pyrophosphate related to bacterial photophosphorylation. Nishikawa K; Hosoi K; Suzuki J; Yoshimura S; Horio T J Biochem; 1973 Mar; 73(3):537-53. PubMed ID: 4353266 [No Abstract] [Full Text] [Related]
11. Diethylstilbestrol. Interactions with membranes and proteins and the different effects upon Ca2+- and Mg2+-dependent activities of the F1-ATPase from Rhodospirillum rubrum. Strid A; Nyrén P; Baltscheffsky M Eur J Biochem; 1988 Sep; 176(2):281-5. PubMed ID: 2901353 [TBL] [Abstract][Full Text] [Related]
12. [Effect of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a ubiquinone analog, and SH-reagents on the electrogenic function of pyrophosphatase from Rhodospirillum rubrum chromatophores]. Oleskin AV; Samuilov VD Biokhimiia; 1983 May; 48(5):797-801. PubMed ID: 6135455 [TBL] [Abstract][Full Text] [Related]
13. Energy-liked reactions in photosynthetic bacteria. X. Solubilization of the membrane-bound energy-linked inorganic pyrophosphatase of Rhodospirillum rubrum. Rao PV; Keister DL Biochem Biophys Res Commun; 1978 Sep; 84(2):465-73. PubMed ID: 102323 [No Abstract] [Full Text] [Related]
14. ATP synthesis driven by inorganic pyrophosphate in Rhodospirillum rubrum chromatophores. Keister DL; Minton NJ Biochem Biophys Res Commun; 1971 Mar; 42(5):932-9. PubMed ID: 4324839 [No Abstract] [Full Text] [Related]
15. A sensitive and rapid method for determination of pyrophosphatase activity. Shakhov YA; Nyrén P Acta Chem Scand B; 1982; 36(10):689-94. PubMed ID: 6131564 [TBL] [Abstract][Full Text] [Related]
16. H+/PPi stoichiometry of membrane-bound pyrophosphatase of Rhodospirillum rubrum. Sosa A; Celis H Arch Biochem Biophys; 1995 Jan; 316(1):421-7. PubMed ID: 7840646 [TBL] [Abstract][Full Text] [Related]
17. Isolation and purification of an active gamma-subunit of the F0.F1-ATP synthase from chromatophore membranes of Rhodospirillum rubrum. The role of gamma in ATP synthesis and hydrolysis as compared to proton translocation. Khananshvili D; Gromet-Elhanan Z J Biol Chem; 1982 Oct; 257(19):11377-83. PubMed ID: 6181058 [TBL] [Abstract][Full Text] [Related]
18. Isolation and properties of succinate dehydrogenase from Rhodospirillum rubrum. Hatefi Y; Davis KA; Baltscheffsky H; Baltscheffsky M; Johansson BC Arch Biochem Biophys; 1972 Oct; 152(2):613-8. PubMed ID: 4344128 [No Abstract] [Full Text] [Related]
19. Amount and turnover rate of the F0F1-ATPase and the stoichiometry of its inhibition by oligomycin in Rhodospirillum rubrum chromatophores. Norling B; Strid A; Tourikas C; Nyrén P Eur J Biochem; 1989 Dec; 186(1-2):333-7. PubMed ID: 2532130 [TBL] [Abstract][Full Text] [Related]
20. The phosphate-pyrophosphate exchange and hydrolytic reactions of the membrane-bound pyrophosphatase of Rhodospirillum rubrum: effects of Mg2+, phosphate, and pyrophosphate. Celis H; Romero I; Gómez-Puyou A Arch Biochem Biophys; 1985 Feb; 236(2):766-74. PubMed ID: 2982324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]