These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 4343962)
1. A molecular basis for learning and memory. Kosower EM Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3292-6. PubMed ID: 4343962 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of transmitter release from nerve terminals. Hubbard JI Ann N Y Acad Sci; 1971 Sep; 183():131-46. PubMed ID: 4330757 [No Abstract] [Full Text] [Related]
5. A role for solute carrier family 10 member 4, or vesicular aminergic-associated transporter, in structural remodelling and transmitter release at the mouse neuromuscular junction. Patra K; Lyons DJ; Bauer P; Hilscher MM; Sharma S; Leão RN; Kullander K Eur J Neurosci; 2015 Feb; 41(3):316-27. PubMed ID: 25410831 [TBL] [Abstract][Full Text] [Related]
6. Transfer of synaptic vesicle antigens to the presynaptic plasma membrane during exocytosis. von Wedel RJ; Carlson SS; Kelly RB Proc Natl Acad Sci U S A; 1981 Feb; 78(2):1014-8. PubMed ID: 7015327 [TBL] [Abstract][Full Text] [Related]
7. Role of storage vesicles in synaptic transmission. Marchbanks RM Symp Soc Exp Biol; 1979; 33():251-76. PubMed ID: 230607 [No Abstract] [Full Text] [Related]
8. [Vesicle cycle in the presynaptic nerve terminal]. Zefirov AL Ross Fiziol Zh Im I M Sechenova; 2007 May; 93(5):544-62. PubMed ID: 17650622 [TBL] [Abstract][Full Text] [Related]
9. Transmitter release is evoked with low probability predominately by calcium flux through single channel openings at the frog neuromuscular junction. Luo F; Dittrich M; Cho S; Stiles JR; Meriney SD J Neurophysiol; 2015 Apr; 113(7):2480-9. PubMed ID: 25652927 [TBL] [Abstract][Full Text] [Related]
10. AP180 maintains the distribution of synaptic and vesicle proteins in the nerve terminal and indirectly regulates the efficacy of Ca2+-triggered exocytosis. Bao H; Daniels RW; MacLeod GT; Charlton MP; Atwood HL; Zhang B J Neurophysiol; 2005 Sep; 94(3):1888-903. PubMed ID: 15888532 [TBL] [Abstract][Full Text] [Related]
12. Quantal Fluctuations in Central Mammalian Synapses: Functional Role of Vesicular Docking Sites. Pulido C; Marty A Physiol Rev; 2017 Oct; 97(4):1403-1430. PubMed ID: 28835509 [TBL] [Abstract][Full Text] [Related]
13. The structural organization of the readily releasable pool of synaptic vesicles. Rizzoli SO; Betz WJ Science; 2004 Mar; 303(5666):2037-9. PubMed ID: 15044806 [TBL] [Abstract][Full Text] [Related]
14. Can presynaptic depolarization release transmitter without calcium influx? Zucker RS; Landò L; Fogelson A J Physiol (Paris); 1986; 81(4):237-45. PubMed ID: 2883310 [TBL] [Abstract][Full Text] [Related]
15. The Mechanisms and Functions of Synaptic Facilitation. Jackman SL; Regehr WG Neuron; 2017 May; 94(3):447-464. PubMed ID: 28472650 [TBL] [Abstract][Full Text] [Related]
16. Two Ca(2+)-dependent steps controlling synaptic vesicle fusion and replenishment at the cerebellar basket cell terminal. Sakaba T Neuron; 2008 Feb; 57(3):406-19. PubMed ID: 18255033 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of synaptic vesicle exocytosis. Lin RC; Scheller RH Annu Rev Cell Dev Biol; 2000; 16():19-49. PubMed ID: 11031229 [TBL] [Abstract][Full Text] [Related]
18. Transmitter metabolism as a mechanism of synaptic plasticity: a modeling study. Axmacher N; Stemmler M; Engel D; Draguhn A; Ritz R J Neurophysiol; 2004 Jan; 91(1):25-39. PubMed ID: 13679396 [TBL] [Abstract][Full Text] [Related]
19. Rab3a deletion reduces vesicle docking and transmitter release at the mouse diaphragm synapse. Coleman WL; Bill CA; Bykhovskaia M Neuroscience; 2007 Aug; 148(1):1-6. PubMed ID: 17640821 [TBL] [Abstract][Full Text] [Related]
20. Building a bilayer model of the neuromuscular synapse. Woodbury DJ Cell Biochem Biophys; 1999; 30(3):303-29. PubMed ID: 10403054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]