These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 4344894)

  • 1. Activation energies of different mitochondrial enzymes: breaks in Arrhenius plots of membrane-bound enzymes occur at different temperatures.
    Lenaz G; Sechi AM; Parenti-Castelli G; Landi L; Bertoli E
    Biochem Biophys Res Commun; 1972 Oct; 49(2):536-42. PubMed ID: 4344894
    [No Abstract]   [Full Text] [Related]  

  • 2. Intramitochondrial localization of palmityl-CoA dehydrogenase, beta-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase in guinea-pig heart.
    Wit-Peeters EM; Scholte HR; van den Akker F; de Nie I
    Biochim Biophys Acta; 1971 Feb; 231(1):23-31. PubMed ID: 4323009
    [No Abstract]   [Full Text] [Related]  

  • 3. Activation energies of mitochondrial adenosine triphosphatase under different conditions.
    Bertoli E; Parenti-Castelli G; Landi L; Sechi AM; Lenaz G
    J Bioenerg; 1973; 4(6):591-8. PubMed ID: 4272412
    [No Abstract]   [Full Text] [Related]  

  • 4. Fractionation by sucrose density gradient centrifugation of membrane fragments derived by sonic disruption of beef heart mitochondria.
    Huang CH; Keyhani E; Lee CP
    Biochim Biophys Acta; 1973 May; 305(2):455-73. PubMed ID: 4147458
    [No Abstract]   [Full Text] [Related]  

  • 5. The membrane systems of the mitochondrion. I. The S fraction of the outer membrane of beef heart mitochondria.
    Bachmann E; Allmann DW; Green DE
    Arch Biochem Biophys; 1966 Jul; 115(1):153-64. PubMed ID: 4226061
    [No Abstract]   [Full Text] [Related]  

  • 6. Constraints on the mechanism of reduction of molecular oxygen by cytochrome oxidase under coupled conditions.
    Wrigglesworth JM; Baum H; Nichols P
    FEBS Lett; 1973 Sep; 35(1):106-8. PubMed ID: 4356491
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies on the activation of purified mitochondrial ATPase by phospholipids.
    Swanljung P; Frigeri L; Ohlson K; Ernster L
    Biochim Biophys Acta; 1973 Jun; 305(3):519-33. PubMed ID: 4354789
    [No Abstract]   [Full Text] [Related]  

  • 8. Steady state kinetics of soluble and membrane-bound mitochondrial ATPase.
    Hammes GG; Hilborn DA
    Biochim Biophys Acta; 1971 Jun; 233(3):580-90. PubMed ID: 4255902
    [No Abstract]   [Full Text] [Related]  

  • 9. The chemical properties of cytochrome c oxidase in intact mitochondria.
    Wilson DF; EreciƄska M; Brocklehurst ES
    Arch Biochem Biophys; 1972 Jul; 151(1):180-7. PubMed ID: 4339791
    [No Abstract]   [Full Text] [Related]  

  • 10. Structural studies on the organization of proteins in mitochondrial membranes using proteolytic enzymes.
    Pasquali P; Landi L; Masotti L; Lenaz G
    J Supramol Struct; 1973; 1(3):194-207. PubMed ID: 4281042
    [No Abstract]   [Full Text] [Related]  

  • 11. The membrane systems of the mitochondrion. III. The isolation and properties of the outer membrane of beef heart mitochondria.
    Green DE; Bachmann E; Allmann DW; Perdue JF
    Arch Biochem Biophys; 1966 Jul; 115(1):172-80. PubMed ID: 5966514
    [No Abstract]   [Full Text] [Related]  

  • 12. The membrane systems of the mitochondrion. II. The K fraction of the outer membrane of beef heart mitochondria.
    Allmann DW; Bachmann E; Green DE
    Arch Biochem Biophys; 1966 Jul; 115(1):165-71. PubMed ID: 5966513
    [No Abstract]   [Full Text] [Related]  

  • 13. The membrane systems of the mitochondrion. V. The membrane of beef heart mitochondria.
    Bachmann E; Lenaz G; Perdue JF; Orme-Johnson N; Green DE
    Arch Biochem Biophys; 1967 Jul; 121(1):73-87. PubMed ID: 6035072
    [No Abstract]   [Full Text] [Related]  

  • 14. On the fragmentation of mitochondria by diethylstilbesterol. II. On the relation of the released proteins to the mitochondrial membranes.
    Smoly JM; Byington KH; Tan WC; Green DE
    Arch Biochem Biophys; 1968 Dec; 128(3):774-89. PubMed ID: 4302997
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of sh-reagents on the mitochondrial ATPase and induction of respiratory control in EDTA particles.
    Vinogradov AD; Gyurova ZS; Fitin AF
    FEBS Lett; 1975 Jun; 54(2):230-3. PubMed ID: 124262
    [No Abstract]   [Full Text] [Related]  

  • 16. Ion transport by heart mitochondria. XXV. Activation of energy-linked K + uptake by non-ionic detergents.
    Brierley GP; Jurkowitz M; Merola AJ; Scott KM
    Arch Biochem Biophys; 1972 Oct; 152(2):744-54. PubMed ID: 4264100
    [No Abstract]   [Full Text] [Related]  

  • 17. The interaction between the mitochondrial ATPase (F 1 ) and the ATPase inhibitor.
    van de Stadt RJ; de Boer BL; van Dam K
    Biochim Biophys Acta; 1973 Feb; 292(2):338-49. PubMed ID: 4349916
    [No Abstract]   [Full Text] [Related]  

  • 18. A study of spin-probe solubility in mitochondrial membranes correlated with ATP-dependent conformational changes.
    Koltover VK; Reichman LM; Yasaitis AA; Blumenfeld LA
    Biochim Biophys Acta; 1971 Jun; 234(3):306-10. PubMed ID: 4399017
    [No Abstract]   [Full Text] [Related]  

  • 19. Charge transfer between water and octane phases by soluble mitochondrial ATPase (F1), bacteriorhodopsin and respiratory chain enzymes.
    Boguslavsky LI; Kondrashin AA; Kozlov IA; Metelsky ST; Skulachev VP; Volkov AG
    FEBS Lett; 1975 Feb; 50(2):223-6. PubMed ID: 163209
    [No Abstract]   [Full Text] [Related]  

  • 20. Solubilization of mitochondrial ATPase by phospholipids.
    Toson G; Contessa AR; Bruni A
    Biochem Biophys Res Commun; 1972 Jul; 48(2):341-7. PubMed ID: 4261366
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.