These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 4346335)

  • 1. Kinetics of electron transfer between cardiac cytochrome c 1 and c.
    Yu CA; Yu L; King TE
    J Biol Chem; 1973 Jan; 248(2):528-33. PubMed ID: 4346335
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxidation and reduction of soluble cytochrome c by membrane-bound oxidase and reductase systems.
    Smith L; Davies HC; Nava M
    J Biol Chem; 1974 May; 249(9):2904-10. PubMed ID: 4364033
    [No Abstract]   [Full Text] [Related]  

  • 3. Controlled reduction of cytochrome b in succinate-cytochrome c reductase complex by succinate in the presence of ascorbate and antimycin.
    Trumpower BL; Katki A
    Biochem Biophys Res Commun; 1975 Jul; 65(1):16-23. PubMed ID: 1170861
    [No Abstract]   [Full Text] [Related]  

  • 4. The b-type cytochromes of bovine heart mitochondria: absorption spectra, enzymatic properties, and distribution in the electron transfer complexes.
    Davis KA; Hatefi Y; Poff KL; Butler WL
    Biochim Biophys Acta; 1973 Dec; 325(3):341-56. PubMed ID: 4360252
    [No Abstract]   [Full Text] [Related]  

  • 5. The respiratory system of the marine bacterium Beneckea natriegens. Oxidation--reduction potentials of the cytochromes.
    Weston JA; Knowles CJ
    FEBS Lett; 1974 Jul; 43(2):235-8. PubMed ID: 4369352
    [No Abstract]   [Full Text] [Related]  

  • 6. Hepatic sulfite oxidase. Congruency in mitochondria of prosthetic groups and activity.
    Cohen HJ; Betcher-Lange S; Kessler DL; Rajagopalan KV
    J Biol Chem; 1972 Dec; 247(23):7759-66. PubMed ID: 4344230
    [No Abstract]   [Full Text] [Related]  

  • 7. Activation of NADH oxidase by succinate in partially ubiquinone-depleted submitochondrial particles.
    Glazek E; Norling B; Nelson BD; Ernster L
    FEBS Lett; 1974 Sep; 46(1):123-6. PubMed ID: 4154079
    [No Abstract]   [Full Text] [Related]  

  • 8. Influence of uncouplers on succinate-cytochrome c reductase.
    Lichtman AH; Howland JL
    FEBS Lett; 1973 Aug; 34(2):256-8. PubMed ID: 4355910
    [No Abstract]   [Full Text] [Related]  

  • 9. On the electron transfer reaction between ferricytochrome c and ferrohexacyanide in the pH range 5 to 7.
    Zabinski RM; Tatti K; Czerlinski GH
    J Biol Chem; 1974 Oct; 249(19):6125-9. PubMed ID: 4371032
    [No Abstract]   [Full Text] [Related]  

  • 10. On the electron-transfer-coupled proton release of cytochrome c.
    Czerlinski GH; Dar K
    Biochim Biophys Acta; 1971 Apr; 234(1):57-61. PubMed ID: 5105365
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of divalent cations on ferredoxin-linked electron transport in chloroplasts.
    Harnischfeger G; Shavit N
    FEBS Lett; 1974 Sep; 45(1):286-9. PubMed ID: 4153326
    [No Abstract]   [Full Text] [Related]  

  • 12. Adrenodoxin reductase.adrenodoxin complex. Flavin to iron-sulfur electron transfer as the rate-limiting step in the NADPH-cytochrome c reductase reaction.
    Lambeth JD; Kamin H
    J Biol Chem; 1979 Apr; 254(8):2766-74. PubMed ID: 34608
    [No Abstract]   [Full Text] [Related]  

  • 13. Reaction of cytochrome c with one-electron redox reagents. I. Reduction of ferricytochrome c by the hydrated electron produced by pulse radiolysis.
    Lichtin NN; Shafferman A; Stein G
    Biochim Biophys Acta; 1973 Aug; 314(2):117-35. PubMed ID: 4355787
    [No Abstract]   [Full Text] [Related]  

  • 14. A thermodynamic characterisation of the cytochromes of chromatophores from Rhodopseudomonas capsulata.
    Evans EH; Crofts AR
    Biochim Biophys Acta; 1974 Jul; 357(1):78-88. PubMed ID: 4369739
    [No Abstract]   [Full Text] [Related]  

  • 15. Biochemical and biophysical studies on cytochrome aa 3 . 8. Effect of cyanide on the catalytic activity.
    Nicholls P; van Buuren KJ; van Gelder BF
    Biochim Biophys Acta; 1972 Sep; 275(3):279-87. PubMed ID: 4341771
    [No Abstract]   [Full Text] [Related]  

  • 16. The appearance of transient species of cytochrome c upon rapid oxidation or reduction at alkaline pH.
    Lambeth DO; Campbell KL; Zand R; Palmer G
    J Biol Chem; 1973 Dec; 248(23):8130-6. PubMed ID: 4356619
    [No Abstract]   [Full Text] [Related]  

  • 17. Microsomal electron transport. I. Reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase and cytochrome P-450 as electron carriers in microsomal NADPH-peroxidase activity.
    Hrycay EG; O'Brien PJ
    Arch Biochem Biophys; 1973 Jul; 157(1):7-22. PubMed ID: 4146146
    [No Abstract]   [Full Text] [Related]  

  • 18. Spectral and catalytic properties of cytochrome P-450 from a diazinon-resistant housefly strain.
    Capdevila J; Perry AS; Agosin M
    Chem Biol Interact; 1974 Aug; 9(2):105-16. PubMed ID: 4371680
    [No Abstract]   [Full Text] [Related]  

  • 19. Electron transfer between cytochrome c and metal hexacyanide complexes. Effect of thermodynamic driving force on the electron transfer rate.
    Cho KC; Chu WF; Choy CL; Che CM
    Biochim Biophys Acta; 1989 Jan; 973(1):53-8. PubMed ID: 2536552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance study of the rate of electron transfer between cytochrome c and iron hexacyanides.
    Stellwagen E; Shulman RG
    J Mol Biol; 1973 Nov; 80(4):559-73. PubMed ID: 4359198
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.