These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 4346994)

  • 1. The role of calcium in depolarization-secretion coupling at the motor nerve terminal.
    Cooke JD; Okamoto K; Quastel DM
    J Physiol; 1973 Jan; 228(2):459-97. PubMed ID: 4346994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cumulative and persistent effects of nerve terminal depolarization on transmitter release.
    Cooke JD; Quastel DM
    J Physiol; 1973 Jan; 228(2):407-34. PubMed ID: 4346992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The specific effect of potassium on transmitter release by motor nerve terminals and its inhibition by calcium.
    Cooke JD; Quastel DM
    J Physiol; 1973 Jan; 228(2):435-58. PubMed ID: 4346993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction of presynaptic polarization with calcium and magnesium in modifying spontaneous transmitter release from mammalian motor nerve terminals.
    Landau EM
    J Physiol; 1969 Aug; 203(2):281-99. PubMed ID: 4307709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noradrenaline action on nerve terminal in the rat diaphragm.
    Kuba K; Tomita T
    J Physiol; 1971 Aug; 217(1):19-31. PubMed ID: 4328451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An examination of the effects of osmotic pressure changes upon transmitter release from mammalian motor nerve terminals.
    Hubbard JI; Jones SF; Landau EM
    J Physiol; 1968 Aug; 197(3):639-57. PubMed ID: 4299014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the release of transmitter at normal, myasthenia gravis and myasthenic syndrome affected human end-plates.
    Cull-Candy SG; Miledi R; Trautmann A; Uchitel OD
    J Physiol; 1980 Feb; 299():621-38. PubMed ID: 6103954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmitter release by mammalian motor nerve terminals in response to focal polarization.
    Cooke JD; Quastel DM
    J Physiol; 1973 Jan; 228(2):377-405. PubMed ID: 4346991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the mechanism of quantal transmitter release at a chemical synapse.
    Blioch ZL; Glagoleva IM; Liberman EA; Nenashev VA
    J Physiol; 1968 Nov; 199(1):11-35. PubMed ID: 4300871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competition between sodium and calcium ions in transmitter release at mammalian neuromuscular junctions.
    Gage PW; Quastel DM
    J Physiol; 1966 Jul; 185(1):95-123. PubMed ID: 5965900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of botulinum toxin on neuromuscular transmission in the rat.
    Cull-Candy SG; Lundh H; Thesleff S
    J Physiol; 1976 Aug; 260(1):177-203. PubMed ID: 184273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The calcium dependence of spontaneous and evoked quantal release at the frog neuromuscular junction.
    Barton SB; Cohen IS; van der Kloot W
    J Physiol; 1983 Apr; 337():735-51. PubMed ID: 6603514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observations on the action of type A botulinum toxin on frog neuromuscular junctions.
    Boroff DA; del Castillo J; Evoy WH; Steinhardt RA
    J Physiol; 1974 Jul; 240(2):227-53. PubMed ID: 4371582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the mechanism by which calcium and magnesium affect the spontaneous release of transmitter from mammalian motor nerve terminals.
    Hubbard JI; Jones SF; Landau EM
    J Physiol; 1968 Feb; 194(2):355-80. PubMed ID: 4295698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurotransmitter release and nerve terminal morphology at the frog neuromuscular junction affected by the dye Erythrosin B.
    Augustine GJ; Levitan H
    J Physiol; 1983 Jan; 334():47-63. PubMed ID: 6134825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance.
    Sivaramakrishnan S; Brodwick MS; Bittner GD
    J Gen Physiol; 1991 Dec; 98(6):1181-96. PubMed ID: 1783897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iberiotoxin-induced block of Ca2+-activated K+ channels induces dihydropyridine sensitivity of ACh release from mammalian motor nerve terminals.
    Flink MT; Atchison WD
    J Pharmacol Exp Ther; 2003 May; 305(2):646-52. PubMed ID: 12606686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lanthanum as a surrogate for calcium in transmitter release at mouse motor nerve terminals.
    Curtis MJ; Quastel DM; Saint DA
    J Physiol; 1986 Apr; 373():243-60. PubMed ID: 2875177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-operative action a calcium ions in transmitter release at the neuromuscular junction.
    Dodge FA; Rahamimoff R
    J Physiol; 1967 Nov; 193(2):419-32. PubMed ID: 6065887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the calcium receptor that mediates depolarization-secretion coupling at cholinergic motor nerve terminals.
    Silinsky EM
    Br J Pharmacol; 1981 Jun; 73(2):413-29. PubMed ID: 6972242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.