BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 4347785)

  • 1. Spin-spin interaction between molybdenum and one of the iron-sulphur systems of xanthine oxidase and its relevance to the enzymic mechanism.
    Lowe DJ; Lynden-Bell RM; Bray RC
    Biochem J; 1972 Nov; 130(1):239-49. PubMed ID: 4347785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic coupling of the molybdenum and iron-sulphur centres in xanthine oxidase and xanthine dehydrogenases.
    Lowe DJ; Bray RC
    Biochem J; 1978 Mar; 169(3):471-9. PubMed ID: 25647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies by electron-paramagnetic-resonance spectroscopy and stopped-flow spectrophotometry on the mechanism of action of turkey liver xanthine dehydrogenase.
    Barber MJ; Bray RC; Lowe DJ; Coughlan MP
    Biochem J; 1976 Feb; 153(2):297-307. PubMed ID: 179533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies by electron-paramagnetic-resonance spectroscopy on the mechanism of action of xanthine dehydrogenase from Veillonella alcalescens.
    Dalton H; Lowe DJ; Pawlik T; Bray RC
    Biochem J; 1976 Feb; 153(2):287-95. PubMed ID: 179532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation-reduction potentials of molybdenum, flavin and iron-sulphur centres in milk xanthine oxidase.
    Cammack R; Barber MJ; Bray RC
    Biochem J; 1976 Aug; 157(2):469-78. PubMed ID: 183752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic interactions in milk xanthine oxidase.
    Barber MJ; Salerno JC; Siegel LM
    Biochemistry; 1982 Mar; 21(7):1648-56. PubMed ID: 6282313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron-electron double resonance measurements on xanthine oxidase.
    Lowe DJ; Hyde JS
    Biochim Biophys Acta; 1975 Jan; 377(1):205-10. PubMed ID: 164223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria.
    Brondino CD; Passeggi MC; Caldeira J; Almendra MJ; Feio MJ; Moura JJ; Moura I
    J Biol Inorg Chem; 2004 Mar; 9(2):145-51. PubMed ID: 14669076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Rapidly appearing" molybdenum electron-paramagnetic-resonance signals from reduced xanthine oxidase.
    Bray RC; Vänngård T
    Biochem J; 1969 Oct; 114(4):725-34. PubMed ID: 4310055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase.
    Turner NA; Doyle WA; Ventom AM; Bray RC
    Eur J Biochem; 1995 Sep; 232(2):646-57. PubMed ID: 7556219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of [33S]sulphur to molybdenum(V) in different reduced forms of xanthine oxidase.
    Malthouse JP; George GN; Lowe DJ; Bray RC
    Biochem J; 1981 Dec; 199(3):629-37. PubMed ID: 6280672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex-formation between reduced xanthine oxidase and purine substrates demonstrated by electron paramagnetic resonance.
    Pick FM; Bray RC
    Biochem J; 1969 Oct; 114(4):735-42. PubMed ID: 4310056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy.
    Butler CS; Charnock JM; Bennett B; Sears HJ; Reilly AJ; Ferguson SJ; Garner CD; Lowe DJ; Thomson AJ; Berks BC; Richardson DJ
    Biochemistry; 1999 Jul; 38(28):9000-12. PubMed ID: 10413473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17Q- and 13C-ENDOR and kinetic studies.
    Howes BD; Bray RC; Richards RL; Turner NA; Bennett B; Lowe DJ
    Biochemistry; 1996 Feb; 35(5):1432-43. PubMed ID: 8634273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reductive half-reaction of xanthine oxidase: mechanistic role of the species giving rise to the "rapid type 1" molybdenum(V) electron paramagnetic resonance signal.
    Hille R; Kim JH; Hemann C
    Biochemistry; 1993 Apr; 32(15):3973-80. PubMed ID: 8385992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the electron paramagnetic resonance properties of the [2Fe-2S]1+ centers in molybdenum enzymes of the xanthine oxidase family: assignment of signals I and II.
    Caldeira J; Belle V; Asso M; Guigliarelli B; Moura I; Moura JJ; Bertrand P
    Biochemistry; 2000 Mar; 39(10):2700-7. PubMed ID: 10704221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the molybdenum centres of native and desulpho xanthine oxidase. The nature of the cyanide-labile sulphur atom and the nature of the proton-accepting group.
    Gutteridge S; Tanner SJ; Bray RC
    Biochem J; 1978 Dec; 175(3):887-97. PubMed ID: 217354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative EPR and redox studies of three prokaryotic enzymes of the xanthine oxidase family: quinoline 2-oxidoreductase, quinaldine 4-oxidase, and isoquinoline 1-oxidoreductase.
    Canne C; Stephan I; Finsterbusch J; Lingens F; Kappl R; Fetzner S; Hüttermann J
    Biochemistry; 1997 Aug; 36(32):9780-90. PubMed ID: 9245410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xanthine dehydrogenase from Drosophila melanogaster: purification and properties of the wild-type enzyme and of a variant lacking iron-sulfur centers.
    Hughes RK
    Biochemistry; 1992 Mar; 31(12):3073-83. PubMed ID: 1313286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numbers and exchangeability with water of oxygen-17 atoms coupled to molybdenum (V) in different reduced forms of xanthine oxidase.
    Bray RC; Gutteridge S
    Biochemistry; 1982 Nov; 21(23):5992-9. PubMed ID: 6295449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.