These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 4347788)

  • 1. The effect of oxygen concentration on the growth and metabolism of Saccharomyces cerevisiae grown with excess of potassium or in potassium-deficient media.
    Bartley W; Broomhead VM
    Biochem J; 1972 Nov; 130(1):251-8. PubMed ID: 4347788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of yeast grown anaerobically in media limiting in potassium.
    Bartley W; Broomhead V
    Biochem J; 1971 Feb; 121(3):461-7. PubMed ID: 4330378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic adaptation in yeast, IV. Alterations in enzyme synthesis during anaerobic-aerobic transitions in exponentially growing cultures.
    Ball AJ; Bruver RM; Tustanoff ER
    Can J Microbiol; 1975 Jun; 21(6):869-76. PubMed ID: 167929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory development in Saccharomyces cerevisiae grown at controlled oxygen tension.
    Rogers PJ; Stewart PR
    J Bacteriol; 1973 Jul; 115(1):88-97. PubMed ID: 4352179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions.
    Navarrete C; Petrezsélyová S; Barreto L; Martínez JL; Zahrádka J; Ariño J; Sychrová H; Ramos J
    FEMS Yeast Res; 2010 Aug; 10(5):508-17. PubMed ID: 20491939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiolipin synthesis during the cell cycle of the yeast Saccharomyces cervisiae.
    Greksák M; Nejedlý K; Zborowski J
    Folia Microbiol (Praha); 1977; 22(1):30-4. PubMed ID: 190090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of elevated temperature on growth, respiratory-deficient mutation, respiratory activity, and ethanol production in yeast.
    Yamamura M; Nagami Y; Vongsuvanlert V; Kumnuanta J; Kamihara T
    Can J Microbiol; 1988 Aug; 34(8):1014-7. PubMed ID: 2850102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The lag phase of Saccharomyces cerevisiae growth following dehydration].
    Beker ME; Damberga BE; Upit AA; Blumberg IaE; Krauze IIa
    Mikrobiologiia; 1974; 43(6):1028-33. PubMed ID: 4141477
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabolic control analysis of the bc1 complex of Saccharomyces cerevisiae: effect on cytochrome c oxidase, respiration and growth rate.
    Boumans H; Berden JA; Grivell LA; van Dam K
    Biochem J; 1998 May; 331 ( Pt 3)(Pt 3):877-83. PubMed ID: 9560317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of oxygen tension on the physiology of Saccharomyces cerevisiae in continuous culture.
    Brown CM; Johnson B
    Antonie Van Leeuwenhoek; 1971; 37(4):477-87. PubMed ID: 4333408
    [No Abstract]   [Full Text] [Related]  

  • 11. Regulation and interconversion of the potassium transport systems of Saccharomyces cerevisiae as revealed by rubidium transport.
    Ramos J; Rodríguez-Navarro A
    Eur J Biochem; 1986 Jan; 154(2):307-11. PubMed ID: 3510870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of insoluble protein fractions of mitochondria from Saccharomyces cerevisiae.
    Fiechter A; Mian FA; Ris H; Halvorson HO
    J Bacteriol; 1972 Feb; 109(2):855-61. PubMed ID: 4550823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The osmotic responses of Saccharomyces cerevisiae in K(+)-depleted medium.
    Meikle AJ; Reed RH; Gadd GM
    FEMS Microbiol Lett; 1991 Feb; 62(1):89-93. PubMed ID: 2032627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium deprivation is sufficient to induce a cell death program in Saccharomyces cerevisiae.
    Lauff DB; Santa-María GE
    FEMS Yeast Res; 2010 Aug; 10(5):497-507. PubMed ID: 20491936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-respiratory oxygen consumption pathways in anaerobically-grown Saccharomyces cerevisiae: evidence and partial characterization.
    Rosenfeld E; Beauvoit B; Rigoulet M; Salmon JM
    Yeast; 2002 Nov; 19(15):1299-321. PubMed ID: 12402241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanistic model of the aerobic growth of Saccharomyces cerevisiae.
    Bijkerk AH; Hall RJ
    Biotechnol Bioeng; 1977 Feb; 19(2):267-96. PubMed ID: 322740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of aerobic and microaerophilic culture in the growth dynamics of Saccharomyces cerevisiae and in training of quiescent and non-quiescent subpopulations.
    Carbó R; Ginovart M; Carta A; Portell X; del Valle LJ
    Arch Microbiol; 2015 Oct; 197(8):991-9. PubMed ID: 26206245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. External K+ affects the internal acidification caused by the addition of glucose to yeast cells.
    Valle E; Bergillos L; Ramos S
    J Gen Microbiol; 1987 Mar; 133(3):535-8. PubMed ID: 2821164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the metabolome of Saccharomyces cerevisiae associated with evolution in aerobic glucose-limited chemostats.
    Mashego MR; Jansen ML; Vinke JL; van Gulik WM; Heijnen JJ
    FEMS Yeast Res; 2005 Feb; 5(4-5):419-30. PubMed ID: 15691747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activities of the enzymes of the Ehrlich pathway and formation of branched-chain alcohols in Saccharomyces cerevisiae and Candida utilis grown in continuous culture on valine or ammonium as sole nitrogen source.
    Derrick S; Large PJ
    J Gen Microbiol; 1993 Nov; 139(11):2783-92. PubMed ID: 8277258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.