These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 4347790)

  • 41. A genomic and transcriptomic approach to investigate the blue pigment phenotype in Pseudomonas fluorescens.
    Andreani NA; Carraro L; Martino ME; Fondi M; Fasolato L; Miotto G; Magro M; Vianello F; Cardazzo B
    Int J Food Microbiol; 2015 Nov; 213():88-98. PubMed ID: 26051958
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Amino acid incorporation in the subcellular structures of Pseudomonas fluorescens A3-12. I. The incorporation site of S35-methionine in the intact cells.
    NOZU K
    Jpn J Microbiol; 1959 Apr; 3():183-90. PubMed ID: 14427870
    [No Abstract]   [Full Text] [Related]  

  • 43. [Automated micromethod for the determination of the utilization of carbon sources by clinically significant Pseudomonas species].
    Kämpfer P; Bette W; Dott W
    Zentralbl Bakteriol Mikrobiol Hyg A; 1987 Jun; 265(1-2):62-73. PubMed ID: 3118596
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of synergists on the metabolism and toxicity of anticholinesterases.
    Wilkinson CF
    Bull World Health Organ; 1971; 44(1-3):171-90. PubMed ID: 4398521
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Di-rhamnolipid is a mosquito pupicidal metabolite from Pseudomonas fluorescens (VCRC B426).
    Prabakaran G; Hoti SL; Rao HS; Vijjapu S
    Acta Trop; 2015 Aug; 148():24-31. PubMed ID: 25912083
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Carbohydrate oxidation by Pseudomonas fluorescens. V. Evidence for gluconokinase and 2-ketogluconokinase.
    NARROD SA; WOOD WA
    J Biol Chem; 1956 May; 220(1):45-55. PubMed ID: 13319325
    [No Abstract]   [Full Text] [Related]  

  • 47. Effect of carbon source on pyrimidine formation in Pseudomonas fluorescens ATCC 13525.
    West TP
    Microbiol Res; 2005; 160(4):337-42. PubMed ID: 16255137
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A cytochrome peroxidase from Pseudomonas fluorescens.
    LENHOFF HM; KAPLAN NO
    Nature; 1953 Oct; 172(4381):730-1. PubMed ID: 13099326
    [No Abstract]   [Full Text] [Related]  

  • 49. [Utilization by Escherichia coli and Pseudomonas fluorescens of a siderophore from Pseudomonas fluorescens strain PAB].
    Pajáro MC; Albesa I
    Rev Argent Microbiol; 1992; 24(2):60-6. PubMed ID: 1298014
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Amino acid makeup characteristics of bacteria utilizing nonnatural compounds].
    Naumova RP; Giniatullin IM; Zakharova NG; Shishkova NA
    Mikrobiologiia; 1978; 47(4):689-92. PubMed ID: 100669
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [The destruction of cyanides and their metal complexes by natural bacterial trains].
    Garbara SV; Ul'berg ZR; Grishchenko NI; Podol'skaia VI
    Mikrobiol Zh (1978); 1992; 54(3):44-8. PubMed ID: 1435357
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Mechanism of glucose oxydation by a strain of Pseudomonas fluorescens (type R). II. Influence of Fe3+ ions on glucose dehydrogenase activity].
    Wurtz B
    C R Seances Soc Biol Fil; 1973; 167(12):1960-64. PubMed ID: 4213924
    [No Abstract]   [Full Text] [Related]  

  • 53. Microbial degradation of phosmet on blueberry fruit and in aqueous systems by indigenous bacterial flora on lowbush blueberries (Vaccinium angustifolium).
    Crowe KM; Bushway AA; Bushway RJ; Davis-Dentici K
    J Food Sci; 2007 Oct; 72(8):M293-9. PubMed ID: 17995608
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Importance of the oxidase reaction in the identification of Pseudomonas aeruginosa, Pseudomonas fluorescens and Pseudomonas putida].
    KLINGE K
    Arch Hyg Bakteriol; 1960 Jun; 144():263-76. PubMed ID: 14409895
    [No Abstract]   [Full Text] [Related]  

  • 55. [Mechanism of glucose oxidation by a Pseudomonas fluorescens strain (type R). III. Influence of endogenous non-protein factors].
    Wurtz B
    C R Seances Soc Biol Fil; 1975; 169(5):1303-9. PubMed ID: 131630
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Amino acid incorporation in the subcellular structures of Pseudomonas fluorescens A3-12. II. Ribonucleoprotein particles derived from the insoluble structures of bacteria and the incorporation of S35-methionine into "broken protoplast".
    NOZU K
    Jpn J Microbiol; 1959 Jul; 3():255-66. PubMed ID: 14427871
    [No Abstract]   [Full Text] [Related]  

  • 57. Cross-species GacA-controlled induction of antibiosis in pseudomonads.
    Dubuis C; Haas D
    Appl Environ Microbiol; 2007 Jan; 73(2):650-4. PubMed ID: 17098922
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of proteolytic pseudomonads isolated from raw milk.
    Kwan KK; Skura BJ
    J Dairy Sci; 1985 Aug; 68(8):1902-9. PubMed ID: 3930583
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pseudomonas fluorescens orchestrates a fine metabolic-balancing act to counter aluminium toxicity.
    Lemire J; Mailloux R; Auger C; Whalen D; Appanna VD
    Environ Microbiol; 2010 Jun; 12(6):1384-90. PubMed ID: 20353438
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ethylbenzene degradation by Pseudomonas fluorescens strain CA-4.
    Corkery DM; O'Connor KE; Buckley CM; Dobson AD
    FEMS Microbiol Lett; 1994 Nov; 124(1):23-7. PubMed ID: 8001765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.