BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 4347968)

  • 1. Metabolism of adenosine 3',5'-cyclic monophosphate and induction of fruiting bodies in Coprinus macrorhizus.
    Uno I; Ishikawa T
    J Bacteriol; 1973 Mar; 113(3):1249-55. PubMed ID: 4347968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of light on fruiting body formation and adenosine 3':5'-cyclic monophosphate metabolism in Coprinus macrorhizus.
    Uno I; Yamaguchi M; Ishikawa T
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):479-83. PubMed ID: 4360945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of glucose on the fruiting body formation and adenosine 3',5'-cyclic monophosphate levels in Coprinus macrorhizus.
    Uno I; Ishikawa T
    J Bacteriol; 1974 Oct; 120(1):96-100. PubMed ID: 4370768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and identification of the fruiting-inducing substances in Coprinus macrorhizus.
    Uno I; Ishikawa T
    J Bacteriol; 1973 Mar; 113(3):1240-8. PubMed ID: 4347967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relation of adenyl cyclase to the activity of other ATP utilizing enzymes and phosphodiesterase in preparations of rat brain; mechanism of stimulation of cyclic AMP accumulation by NaF.
    Katz S; Tenenhouse A
    Br J Pharmacol; 1973 Jul; 48(3):505-15. PubMed ID: 4357963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restrained adenyl cyclase in human neutrophils: stimulation of cyclic adenosine 3':5'-monophosphate formation and adenyl cyclase activity by phagocytosis and prostaglandins.
    Stolc V
    Blood; 1974 May; 43(5):743-8. PubMed ID: 4362499
    [No Abstract]   [Full Text] [Related]  

  • 7. Demonstration in Aspergillus niger of adenyl cyclase, a cyclic adenosine 3',5'-monophosphate-binding protein, and studies on intracellular and extracellular phosphodiesterases.
    Wold WS; Suzuki I
    Can J Microbiol; 1974 Nov; 20(11):1567-76. PubMed ID: 4373154
    [No Abstract]   [Full Text] [Related]  

  • 8. The relation of adenyl cyclase to the activity of other ATP utilizing enzymes and phosphodiesterase in preparations of rat brain; mechanism of stimulation of cyclic AMP accumulation by adrenaline, ouabain and Mn++.
    Katz S; Tenenhouse A
    Br J Pharmacol; 1973 Jul; 48(3):516-26. PubMed ID: 4148740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenyl cyclase-phosphodiesterase system in arterial smooth muscle.
    Triner L; Vulliemoz Y; Verosky M; Habif DV; Nahas GG
    Life Sci I; 1972 Sep; 11(17):817-24. PubMed ID: 4347988
    [No Abstract]   [Full Text] [Related]  

  • 10. Dynamic interaction of prostaglandin and norepinephrine in the formation of adenosine 3',5'-monophosphate in human and rabbit platelets.
    Harwood JP; Moskowitz J; Krishna G
    Biochim Biophys Acta; 1971 Feb; 261(2):444-56. PubMed ID: 4335547
    [No Abstract]   [Full Text] [Related]  

  • 11. Agar plate screening procedure for cyclic adenosine 3',5'-monophosphate and inhibitors of cyclic nucleotide phosphodiesterase.
    Somers PJ; Higgens CE
    Appl Environ Microbiol; 1977 Nov; 34(5):604-6. PubMed ID: 201216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes of the activities of adenyl cyclase and cAMP-phosphodiesterase and of the level of 3'5' cyclic adenosine monophosphate in rat mammary gland during pregnancy and lactation.
    Sapag-Hagar M; Greenbaum AL
    Biochem Biophys Res Commun; 1973 Aug; 53(3):982-7. PubMed ID: 4354456
    [No Abstract]   [Full Text] [Related]  

  • 13. Relationship of adenosine 3',5'-monophosphate to growth and metabolism of Tetrahymena pyriformis.
    Voichick J; Elson C; Granner D; Shrago E
    J Bacteriol; 1973 Jul; 115(1):68-72. PubMed ID: 4352178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of adenosine 3':5'-monophosphate content in human astrocytoma cells by adenosine and the adenine nucleotides.
    Clark RB; Gross R; Su YF; Perkins JP
    J Biol Chem; 1974 Aug; 249(16):5296-303. PubMed ID: 4369127
    [No Abstract]   [Full Text] [Related]  

  • 15. Rate of inactivation of adenyl cyclase and phosphodiesterase: determinants of brain cyclic AMP.
    Jones DJ; Medina MA; Ross DH; Stavinoha WB
    Life Sci; 1974 Apr; 14(8):1577-85. PubMed ID: 4364281
    [No Abstract]   [Full Text] [Related]  

  • 16. Adenosine 3',5'-cyclic monophosphate and morphology in Neurospora crassa: drug-induced alterations.
    Scott WA; Solomon B
    J Bacteriol; 1975 May; 122(2):454-63. PubMed ID: 165170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence against the presence of 3',5'-cyclic adenosine monophosphate and relevant enzymes in Lactobacillus plantarum.
    Sahyoun N; Durr IF
    J Bacteriol; 1972 Oct; 112(1):421-6. PubMed ID: 4342815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive determination for adenylate cyclase activity by cyclic adenosine 3',5'-monophosphate protein binding assay.
    Schwabe U; Elbert R; Schönhöfer PS
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 286(1):83-96. PubMed ID: 4375795
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of cyclic adenosine 3':5'-monophosphate in the action of 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (DDT)on hepatic and renal metabolism.
    Kacew S; Singhal RL
    Biochem J; 1974 Jul; 142(1):145-52. PubMed ID: 4374184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. c-AMP phosphodiesterase activity during growth and differentiation in Blastocladiella emersonii.
    Maia JC; Camargo EP
    Cell Differ; 1974 Sep; 3(3):147-55. PubMed ID: 4369464
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.