These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 4348306)

  • 1. Adenosine 3',5'-cyclic monophosphate regulation of chloramphenicol acetyltransferase synthesis in vitro from P1CM DNA.
    Dottin RP; Shiner LS; Hoar DI
    Virology; 1973 Feb; 51(2):509-11. PubMed ID: 4348306
    [No Abstract]   [Full Text] [Related]  

  • 2. A DNA-directed cell-free system for beta-galactosidase synthesis; characterization of the de novo synthesized enzyme and some aspects of the regulation of synthesis.
    Zubay G; Chambers DA
    Cold Spring Harb Symp Quant Biol; 1969; 34():753-61. PubMed ID: 4191708
    [No Abstract]   [Full Text] [Related]  

  • 3. Synthesis of chloramphenicol acetyltransferase coded by bacterial gene carried on P1CM bacteriophage in extracts of human blood platelets.
    Garber N; Carmielli T; Gilboa-Garber N
    Can J Biochem; 1978 Mar; 56(3):143-9. PubMed ID: 346179
    [No Abstract]   [Full Text] [Related]  

  • 4. Stimulation of lac mRNA synthesis by cyclic AMP in cell free extracts of Escherichia coli.
    de Crombrugghe B; Varmus HE; Perlman RL; Pastan IH
    Biochem Biophys Res Commun; 1970 Mar; 38(5):894-901. PubMed ID: 4314384
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of galactokinase synthesis by cyclic adenosine 3',5'-monophosphate in cell-free extracts of Escherichia coli.
    Parks JS; Gottesman M; Perlman RL; Pastan I
    J Biol Chem; 1971 Apr; 246(8):2419-24. PubMed ID: 4324214
    [No Abstract]   [Full Text] [Related]  

  • 6. Residual polarity and transcription-translation coupling during recovery from chloramphenicol or fusidic acid.
    Pastushok C; Kennell D
    J Bacteriol; 1974 Feb; 117(2):631-40. PubMed ID: 4359650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycistronic effects of catabolite repression on the lac operon.
    Silverstone AE; Magasanik B
    J Bacteriol; 1972 Dec; 112(3):1184-92. PubMed ID: 4118294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of lac messenger ribonucleic acid synthesis by cyclic adenosine 3',5'-monophosphate and glucose.
    Varmus HE; Perlman RL; Pastan I
    J Biol Chem; 1970 May; 245(9):2259-67. PubMed ID: 4315149
    [No Abstract]   [Full Text] [Related]  

  • 9. The kinetics of induction of -galactoside permease.
    West IC; Stein WD
    Biochim Biophys Acta; 1973 Apr; 308(7):161-7. PubMed ID: 4579082
    [No Abstract]   [Full Text] [Related]  

  • 10. [Elaboration of chloramphenicol acetyltransferase by cells of E. coli K-12 under conditions altering the intracellular concentration of cyclic adenosine-3',5'-monophosphate].
    Boĭchenko MN; Aniskin ED
    Biull Eksp Biol Med; 1976 Mar; 81(3):294-5. PubMed ID: 182302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and isolation of the repressor protein for the tryptophan operon of Escherichia coli.
    Zubay G; Morse DE; Schrenk WJ; Miller JH
    Proc Natl Acad Sci U S A; 1972 May; 69(5):1100-3. PubMed ID: 4338582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cyclic 3',5'-adenosine monophosphate stimulation of chloramphenicol-acetyltransferase synthesis in bacterial cellular systems].
    Boĭchenko MN; Aniskin ED
    Biull Eksp Biol Med; 1975 Oct; 80(10):65-6. PubMed ID: 179643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A messenger RNA from the lactose operon of Escherichia coli that can not direct the production of functional -galactosidase in absence of exogenous adenosine 3',5-cyclic monophosphate.
    Simon M; Apirion D
    Genetics; 1972 May; 71(1):1-18. PubMed ID: 4338629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies with cyclic adenosine monophosphate receptor and stimulation of in vitro transcription of the Gal operon.
    Anderson WB; Gottesman ME; Pastan I
    J Biol Chem; 1974 Jun; 249(11):3592-6. PubMed ID: 4364661
    [No Abstract]   [Full Text] [Related]  

  • 15. [Role of cyclic adenosine-3',5'-monophosphate in the regulation of bacterial gene transcription].
    Gershanovich VN
    Izv Akad Nauk SSSR Biol; 1977; (3):429-39. PubMed ID: 195991
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies on the lactose operon. The control of DNA-directed in vitro protein synthesis by interference factor i-alpha.
    Kung HF; Morrissey J; Revel M; Spears C; Weissbach H
    J Biol Chem; 1975 Nov; 250(22):8780-4. PubMed ID: 1102542
    [No Abstract]   [Full Text] [Related]  

  • 17. Coordinate and differential in vitro syntheses of two RNA polymerase subunits.
    Austin S
    Nature; 1974 Dec; 252(5484):596-7. PubMed ID: 4610425
    [No Abstract]   [Full Text] [Related]  

  • 18. Cyclic adenosine 5'-monophosphate in Escherichia coli.
    Pastan I; Adhya S
    Bacteriol Rev; 1976 Sep; 40(3):527-51. PubMed ID: 186018
    [No Abstract]   [Full Text] [Related]  

  • 19. Escape synthesis of beta-galactosidase under the control of bacteriophage lambda.
    Mercereau-Puijalon O; Kourilsky P
    J Mol Biol; 1976 Dec; 108(4):733-51. PubMed ID: 190407
    [No Abstract]   [Full Text] [Related]  

  • 20. The messenger-directed synthesis of the alpha-fragment of the enzyme beta-galactosidase.
    Reiness G; Zubay G
    Biochem Biophys Res Commun; 1973 Aug; 53(3):967-74. PubMed ID: 4354455
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.