BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 4348921)

  • 21. Interaction of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase with FAD, substrates, and analogues. Spectral and fluorescence investigations.
    Kishore GM; Snell EE
    J Biol Chem; 1981 May; 256(9):4234-40. PubMed ID: 7217081
    [No Abstract]   [Full Text] [Related]  

  • 22. Redox potentials of the flavoprotein lactate oxidase.
    Stankovich M; Fox B
    Biochemistry; 1983 Sep; 22(19):4466-72. PubMed ID: 6626511
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The bacterial degradation of flavonoids. Hydroxylation of the A-ring of taxifolin by a soil pseudomonad.
    Jeffrey AM; Knight M; Evans WC
    Biochem J; 1972 Nov; 130(2):373-81. PubMed ID: 4146277
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic studies on the reaction of p-hydroxybenzoate hydroxylase. Agreement of steady state and rapid reaction data.
    Husain M; Massey V
    J Biol Chem; 1979 Jul; 254(14):6657-66. PubMed ID: 36402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The stereospecificity of bacterial external flavoprotein monooxygenases for nicotinamide adenine dinucleotide.
    You KS; Arnold LJ; Kaplan NO
    Arch Biochem Biophys; 1977 Apr; 180(2):550-4. PubMed ID: 195526
    [No Abstract]   [Full Text] [Related]  

  • 27. Kinetic and mechanistic studies on the reduction of melilotate hydroxylase by reduced pyridine nucleotides.
    Schopfer LM; Massey V
    J Biol Chem; 1979 Nov; 254(21):10634-43. PubMed ID: 227848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies on the effector specificity of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens.
    Spector T; Massey V
    J Biol Chem; 1972 Jul; 247(14):4679-87. PubMed ID: 4402938
    [No Abstract]   [Full Text] [Related]  

  • 29. New spectral species of L-lysine monooxygenase, a flavoprotein.
    Yamamoto S; Hirata F; Yamauch T; Nozaki M; Hiromi K; Hayaishi O
    J Biol Chem; 1971 Sep; 246(17):5540-2. PubMed ID: 5124502
    [No Abstract]   [Full Text] [Related]  

  • 30. The purification and characterization of 4-ethylphenol methylenehydroxylase, a flavocytochrome from Pseudomonas putida JD1.
    Reeve CD; Carver MA; Hopper DJ
    Biochem J; 1989 Oct; 263(2):431-7. PubMed ID: 2556994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of putidaredoxin and P450 cam in methylene hydroxylation.
    Tyson CA; Lipscomb JD; Gunsalus IC
    J Biol Chem; 1972 Sep; 247(18):5777-84. PubMed ID: 4341491
    [No Abstract]   [Full Text] [Related]  

  • 32. The metabolism of coumarin by a microorganism. V. Melilotate hydroxylase.
    Levy CC; Frost P
    J Biol Chem; 1966 Feb; 241(4):997-1003. PubMed ID: 4285850
    [No Abstract]   [Full Text] [Related]  

  • 33. Mechanism of p-hydroxyphenylacetate-3-hydroxylase. A two-protein enzyme.
    Arunachalam U; Massey V; Miller SM
    J Biol Chem; 1994 Jan; 269(1):150-5. PubMed ID: 8276789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of aromatic hydroxylation. Properties of a model for pyridine nucleotide-dependent flavoprotein hydroxylases.
    Ravindranath SD; Kumar AA; Kumar RP; Vaidyanathan CS; Rao NA
    Arch Biochem Biophys; 1974 Dec; 165(2):478-84. PubMed ID: 4374135
    [No Abstract]   [Full Text] [Related]  

  • 35. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intermediates during the fatty acyl CoA dehydrogenase catalyzed reduction of electron transfer flavoprotein (ETF) by fatty acyl CoA esters.
    Reinsch JW; Feinberg BA; McFarland JT
    Biochem Biophys Res Commun; 1980 Jun; 94(4):1409-16. PubMed ID: 7396968
    [No Abstract]   [Full Text] [Related]  

  • 37. Reactions of 1-deaza-FAD-substituted phenol hydroxylase and melilotate hydroxylase.
    Detmer K; Schopfer LM; Massey V
    J Biol Chem; 1984 Feb; 259(3):1532-8. PubMed ID: 6693423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of action of p-hydroxybenzoate hydroxylase from Pseudomonas putida. 3. The enzyme-substrate complex.
    Teng N; Kotowycz G; Calvin M; Hosokawa K
    J Biol Chem; 1971 Sep; 246(17):5448-53. PubMed ID: 4398470
    [No Abstract]   [Full Text] [Related]  

  • 39. Studies on the oxidative half-reaction of p-hydroxyphenylacetate 3-hydroxylase.
    Arunachalam U; Massey V
    J Biol Chem; 1994 Apr; 269(16):11795-801. PubMed ID: 8163477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. P-Hydroxybenzoate hydroxylase and melilotate hydroxylase.
    Husain M; Schopfer LM; Massey V
    Methods Enzymol; 1978; 53():543-58. PubMed ID: 30879
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.