BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 4348921)

  • 41. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains.
    Sevrioukova I; Truan G; Peterson JA
    Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolism of resorcinylic compounds by bacteria. Purification and properties of orcinol hydroxylase from Pseudomonas putida 01.
    Ohta Y; Higgins I; Ribbons DW
    J Biol Chem; 1975 May; 250(10):3814-25. PubMed ID: 1126936
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria.
    Kunz WS; Kunz W
    Biochim Biophys Acta; 1985 Sep; 841(3):237-46. PubMed ID: 4027266
    [TBL] [Abstract][Full Text] [Related]  

  • 44. p-cresol methylhydroxylase from a denitrifying bacterium involved in anaerobic degradation of p-cresol.
    Hopper DJ; Bossert ID; Rhodes-Roberts ME
    J Bacteriol; 1991 Feb; 173(3):1298-301. PubMed ID: 1991722
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3-Hydroxybenzoate 4-hydroxylase from Pseudomonas testosteroni.
    Michalover JL; Ribbons DW; Hughes H
    Biochem Biophys Res Commun; 1973 Dec; 55(3):888-96. PubMed ID: 4148586
    [No Abstract]   [Full Text] [Related]  

  • 46. Possible mechanism of coupled NADPH oxidase and P-450 monooxygenase action.
    Jansson I; Schenkman JB
    Adv Exp Med Biol; 1981; 136 Pt A():145-63. PubMed ID: 7344455
    [No Abstract]   [Full Text] [Related]  

  • 47. Bacterial metabolism of resorcinylic compounds: purification and properties of orcinol hydroxylase and resorcinol hydroxylase from Pseudomonas putida ORC.
    Ohta Y; Ribbons DW
    Eur J Biochem; 1976 Jan; 61(1):259-69. PubMed ID: 1280
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Studies on the kinetics and mechanism of reduction of flavodoxin from Peptostreptococcus elsdenii by sodium dithionite.
    Mayhew SG; Massey V
    Biochim Biophys Acta; 1973 Jul; 315(1):181-90. PubMed ID: 4743900
    [No Abstract]   [Full Text] [Related]  

  • 49. The 4-hydroxylation of cinnamic acid by sorghum microsomes and the requirement for cytochrome P-450.
    Potts JR; Weklych R; Conn EE; Rowell J
    J Biol Chem; 1974 Aug; 249(16):5019-26. PubMed ID: 4153152
    [No Abstract]   [Full Text] [Related]  

  • 50. The reaction mechanism of p-hydroxybenzoate hydroxylase and a role of the substrate as an effector.
    Yano K; Higashi N; Nakamura S; Arima K
    Biochem Biophys Res Commun; 1969 Feb; 34(3):277-82. PubMed ID: 4388007
    [No Abstract]   [Full Text] [Related]  

  • 51. The mechanism of action of xanthine oxidase.
    Olson JS; Ballou DP; Palmer G; Massey V
    J Biol Chem; 1974 Jul; 249(14):4363-82. PubMed ID: 4367215
    [No Abstract]   [Full Text] [Related]  

  • 52. Specificity of a catabolic pathway--a lesson learned from indirect assays.
    Ribbons DW; Ota Y; Higgins IJ
    J Bacteriol; 1971 May; 106(2):702-3. PubMed ID: 4324808
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The kinetic mechanism of salicylate hydroxylase as studied by initial rate measurement, rapid reaction kinetics, and isotope effects.
    Wang LH; Tu SC
    J Biol Chem; 1984 Sep; 259(17):10682-8. PubMed ID: 6381488
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pseudomonas cepacia 3-hydroxybenzoate 6-hydroxylase: stereochemistry, isotope effects, and kinetic mechanism.
    Yu YM; Wang LH; Tu SC
    Biochemistry; 1987 Feb; 26(4):1105-10. PubMed ID: 3552041
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of electron-transfer flavoprotein and alpha-lipoamide dehydrogenase redox states by two-channel fluorimetry and its application to the investigation of beta-oxidation.
    Kunz WS
    Biochim Biophys Acta; 1988 Jan; 932(1):8-16. PubMed ID: 3337800
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A soluble methylene hydroxylase system: structure and role of cytochrome P-450 and iron-sulfur protein components.
    Gunsalus IC
    Hoppe Seylers Z Physiol Chem; 1968 Nov; 349(11):1610-3. PubMed ID: 4317681
    [No Abstract]   [Full Text] [Related]  

  • 57. Molecular properties of the inducible lupanine hydroxylase from growing cultures of Pseudomonas lupanini.
    RogoziƄski J
    Acta Biochim Pol; 1975; 22(1):57-66. PubMed ID: 1130159
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanism of salicylate hydroxylase-catalyzed decarboxylation.
    Suzuki K; Katagiri M
    Biochim Biophys Acta; 1981 Feb; 657(2):530-4. PubMed ID: 7213760
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Mechanism of oxidations in Pseudomonas fluorescens. VII. Oxidation of NADH by nonproliferating S type suspensions].
    Supavej S; Behr P; Meyer E; Wurtz B
    C R Seances Soc Biol Fil; 1972; 166(8):1133-8. PubMed ID: 4349703
    [No Abstract]   [Full Text] [Related]  

  • 60. Cytochrome oxidase from Pseudomonas aeruginosa. I. Reaction with copper protein.
    Wharton DC; Gudat JC; Gibson QH
    Biochim Biophys Acta; 1973 Apr; 292(3):611-20. PubMed ID: 4350258
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.