These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 4349041)

  • 1. Mitochondrial-cytosolic interactions in perfused rat heart. Role of coupled transamination in repletion of citric acid cycle intermediates.
    Safer B; Williamson JR
    J Biol Chem; 1973 Apr; 248(7):2570-9. PubMed ID: 4349041
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of glutamate metabolism and interactions with the citric acid cycle in rat heart mitochondria.
    LaNoue KF; Walajtys EI; Williamson JR
    J Biol Chem; 1973 Oct; 248(20):7171-83. PubMed ID: 4355202
    [No Abstract]   [Full Text] [Related]  

  • 3. Inhibition of the mitochondrial respiratory chain in isolated atria--a comparison of rotenone and amytal.
    Liu M; Siess M; Hoffmann PC
    Biochem Pharmacol; 1970 Jan; 19(1):197-207. PubMed ID: 4323654
    [No Abstract]   [Full Text] [Related]  

  • 4. Control of citric acid cycle activity in rat heart mitochondria.
    LaNoue K; Nicklas WJ; Williamson JR
    J Biol Chem; 1970 Jan; 245(1):102-11. PubMed ID: 4312474
    [No Abstract]   [Full Text] [Related]  

  • 5. Mitochondrial-cytosolic interactions in cardiac tissue: role of the malate-aspartate cycle in the removal of glycolytic NADH from the cytosol.
    Williamson JR; Safer B; LaNoue KF; Smith CM; Walajtys E
    Symp Soc Exp Biol; 1973; 27():241-81. PubMed ID: 4358367
    [No Abstract]   [Full Text] [Related]  

  • 6. Tricarboxylic acid cycle flux and enzyme activities in the isolated working rat heart.
    Cooney GJ; Taegtmeyer H; Newsholme EA
    Biochem J; 1981 Dec; 200(3):701-3. PubMed ID: 7342978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-term effects of ouabain on energy-rich, glycolytic and citric-acid-cycle intermediates in frog heart.
    Arese P; Bosia A; Rossini L
    Biochem Biophys Res Commun; 1967 Apr; 27(2):138-42. PubMed ID: 6035480
    [No Abstract]   [Full Text] [Related]  

  • 8. Feedback interactions in the control of citric acid cycle activity in rat heart mitochondria.
    LaNoue KF; Bryla J; Williamson JR
    J Biol Chem; 1972 Feb; 247(3):667-79. PubMed ID: 4333508
    [No Abstract]   [Full Text] [Related]  

  • 9. Function, substrate supply, and metabolic content of rabbit heart perfused in situ.
    Thorn W; Gercken G; Hürter P
    Am J Physiol; 1968 Jan; 214(1):139-45. PubMed ID: 5634517
    [No Abstract]   [Full Text] [Related]  

  • 10. Computer simulation of energy metabolism in anoxic perfused rat heart.
    Achs MJ; Garfinkel D
    Am J Physiol; 1977 May; 232(5):R164-74. PubMed ID: 16502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of myocardial energy metabolism.
    Illingworth JA; Ford WC; Kobayashi K; Williamson JR
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():271-90. PubMed ID: 175415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular distribution of malate-aspartate cycle intermediates during normoxia and anoxia in the heart.
    Wiesner RJ; Kreutzer U; Rösen P; Grieshaber MK
    Biochim Biophys Acta; 1988 Oct; 936(1):114-23. PubMed ID: 2902879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the citric acid cycle in mammalian systems.
    Williamson JR; Cooper RH
    FEBS Lett; 1980 Aug; 117 Suppl():K73-85. PubMed ID: 6998729
    [No Abstract]   [Full Text] [Related]  

  • 14. Myocardial energy metabolism.
    Opie LH
    Adv Cardiol; 1974; 12(0):70-83. PubMed ID: 4365502
    [No Abstract]   [Full Text] [Related]  

  • 15. Coordination of citric acid cycle activity with electron transport flux.
    Williamson JR; Ford C; Illingworth J; Safer B
    Circ Res; 1976 May; 38(5 Suppl 1):I39-51. PubMed ID: 1269091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of the transport of reducing equivalents across the mitochondrial membrane in perfused rat heart.
    Safer B; Smith CM; Williamson JR
    J Mol Cell Cardiol; 1971 Jun; 2(2):111-24. PubMed ID: 4329775
    [No Abstract]   [Full Text] [Related]  

  • 17. Glycolytic control mechanisms. II. Kinetics of intermediate changes during the aerobic-anoxic transition in perfused rat heart.
    Williamson JR
    J Biol Chem; 1966 Nov; 241(21):5026-36. PubMed ID: 4224561
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of increased mechanical work by isolated perfused rat heart during production or uptake of ketone bodies. Assessment of mitochondrial oxidized to reduced free nicotinamide-adenine dinucleotide ratios and oxaloacetate concentrations.
    Opie LH; Owen P
    Biochem J; 1975 Jun; 148(3):403-15. PubMed ID: 173281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic, ultrastructural, and mechanical changes in the isolated rat heart perfused with aerobic medium in the absence or presence of glucose.
    Dhalla NS; Matoushek RF; Sun CN; Olson RE
    Can J Physiol Pharmacol; 1973 Aug; 51(8):590-603. PubMed ID: 4148272
    [No Abstract]   [Full Text] [Related]  

  • 20. Computer simulation of rat heart metabolism after adding glucose to the perfusate.
    Achs MJ; Garfinkel D
    Am J Physiol; 1977 May; 232(5):R175-84. PubMed ID: 16503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.