These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 4349317)

  • 1. A Novel function of cytochrome C (555, Chlorobium thiosulfatophilum) in oxidation of thiosulfate.
    Kusai A; Yamanaka T
    Biochem Biophys Res Commun; 1973 Mar; 51(1):107-12. PubMed ID: 4349317
    [No Abstract]   [Full Text] [Related]  

  • 2. The oxidation mechanisms of thiosulphate and sulphide in Chlorobium thiosulphatophilum: roles of cytochrome c-551 and cytochrome c-553.
    Kusai K; Yamanaka T
    Biochim Biophys Acta; 1973 Nov; 325(2):304-14. PubMed ID: 4357558
    [No Abstract]   [Full Text] [Related]  

  • 3. Cytochrome c (553, Chlorobium thiosulfatophilum) is a sulphide-cytochrome c reductase.
    Kusai A; Yamanaka T
    FEBS Lett; 1973 Aug; 34(2):235-7. PubMed ID: 4355908
    [No Abstract]   [Full Text] [Related]  

  • 4. Identification of a thiosulfate utilization gene cluster from the green phototrophic bacterium Chlorobium limicola.
    Verté F; Kostanjevecki V; De Smet L; Meyer TE; Cusanovich MA; Van Beeumen JJ
    Biochemistry; 2002 Mar; 41(9):2932-45. PubMed ID: 11863431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfur oxidation in mutants of the photosynthetic green sulfur bacterium Chlorobium tepidum devoid of cytochrome c-554 and SoxB.
    Azai C; Tsukatani Y; Harada J; Oh-oka H
    Photosynth Res; 2009 May; 100(2):57-65. PubMed ID: 19421892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation.
    Wodara C; Bardischewsky F; Friedrich CG
    J Bacteriol; 1997 Aug; 179(16):5014-23. PubMed ID: 9260941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Oxidation of inorganic compound by autotrophic bacteria (author's transl)].
    Yamanaka T
    Seikagaku; 1976; 48(5):262-78. PubMed ID: 184217
    [No Abstract]   [Full Text] [Related]  

  • 8. Biochemical studies of a soxF-encoded monomeric flavoprotein purified from the green sulfur bacterium Chlorobaculum tepidum that stimulates in vitro thiosulfate oxidation.
    Ogawa T; Furusawa T; Shiga M; Seo D; Sakurai H; Inoue K
    Biosci Biotechnol Biochem; 2010; 74(4):771-80. PubMed ID: 20378984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Utilisation of molecular hydrogen by Chlorobium thiosulfatophilum. Growth and CO2-fixation].
    Lippert KD; Pfennig N
    Arch Mikrobiol; 1969; 65(1):29-47. PubMed ID: 4915429
    [No Abstract]   [Full Text] [Related]  

  • 10. Oxidation-reduction potentials of respiratory chain components in Thiobacillus A2.
    Kula TJ; Aleem MI; Wilson DF
    Biochim Biophys Acta; 1982 May; 680(2):142-51. PubMed ID: 6284218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of thiosulfate and tetrathionate by heterotrophic bacteria from soil.
    Trudinger PA
    J Bacteriol; 1967 Feb; 93(2):550-9. PubMed ID: 6020561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme.
    Bamford VA; Bruno S; Rasmussen T; Appia-Ayme C; Cheesman MR; Berks BC; Hemmings AM
    EMBO J; 2002 Nov; 21(21):5599-610. PubMed ID: 12411478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of Chlorobium limicola by a plasmid that confers the ability to utilize thiosulfate.
    Méndez-Alvarez S; Pavón V; Esteve I; Guerrero R; Gaju N
    J Bacteriol; 1994 Dec; 176(23):7395-7. PubMed ID: 7893283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic heterogeneity in Chlorobium limicola: chromosomic and plasmidic differences among strains.
    Méndez-Alvarez S; Pavoń V; Esteve I; Guerrero R; Gaju N
    FEMS Microbiol Lett; 1995 Dec; 134(2-3):279-85. PubMed ID: 8586280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periplasmic CO-binding c-type cytochrome in a marine bacterium.
    Knowles CJ; Calcott PH; MacLeod RA
    FEBS Lett; 1974 Dec; 49(1):78-83. PubMed ID: 4374388
    [No Abstract]   [Full Text] [Related]  

  • 16. Tetrathionate reduction and production of hydrogen sulfide from thiosulfate.
    Barrett EL; Clark MA
    Microbiol Rev; 1987 Jun; 51(2):192-205. PubMed ID: 3299028
    [No Abstract]   [Full Text] [Related]  

  • 17. Structure of cytochrome c555 of Chlorobium thiosulfatophilum: primitive low-potential cytochrome c.
    Korszun ZR; Salemme FR
    Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5244-7. PubMed ID: 202947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithoautotrophic growth of the freshwater strain Beggiatoa D-402 and energy conservation in a homogeneous culture under microoxic conditions.
    Grabovich MY; Patritskaya VY; Muntyan MS; Dubinina GA
    FEMS Microbiol Lett; 2001 Nov; 204(2):341-5. PubMed ID: 11731146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An NAD(P) reductase derived from Chlorobium thiosulfatophilum: purification and some properties.
    Kusai A; Yamanaka T
    Biochim Biophys Acta; 1973 Apr; 292(3):621-33. PubMed ID: 4145179
    [No Abstract]   [Full Text] [Related]  

  • 20. Purification and characterization of a periplasmic Thiosulfate dehydrogenase from the obligately autotrophic Thiobacillus sp. W5.
    Visser JM; de Jong GA; Robertson LA; Kuenen JG
    Arch Microbiol; 1996 Dec; 166(6):372-8. PubMed ID: 9082913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.