These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 4349920)

  • 1. Electron paramagnetic resonance studies on nitrogenase. 3. Function of magnesium adenosine 5'-triphosphate and adenosine 5'-diphosphate in catalysis by nitrogenase.
    Mortenson LE; Zumpft WG; Palmer G
    Biochim Biophys Acta; 1973 Feb; 292(2):422-35. PubMed ID: 4349920
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of magnesium adenosine 5'-triphosphate on the accessibility of the iron of clostridial azoferredoxin, a component of nitrogenase.
    Walker GA; Mortenson LE
    Biochemistry; 1974 May; 13(11):2382-8. PubMed ID: 4364777
    [No Abstract]   [Full Text] [Related]  

  • 3. Electron paramagnetic resonance studies on nitrogenase. II. Interaction of adenosine 5'-triphosphate with azoferredoxin.
    Zumft WG; Palmer G; Mortenson LE
    Biochim Biophys Acta; 1973 Feb; 292(2):413-21. PubMed ID: 4349919
    [No Abstract]   [Full Text] [Related]  

  • 4. Electron-paramagnetic-resonance studies on nitrogenase. Investigation of the oxidation-reduction behaviour of azoferredoxin and molybdoferredoxin with potentiometric and rapid-freeze techniques.
    Zumft WG; Mortenson LE; Palmer G
    Eur J Biochem; 1974 Aug; 46(3):525-35. PubMed ID: 4368670
    [No Abstract]   [Full Text] [Related]  

  • 5. The binding of ATP and ADP by nitrogenase components from Clostridium pasteurianum.
    Tso MY; Burris RH
    Biochim Biophys Acta; 1973 Jun; 309(2):263-70. PubMed ID: 4731961
    [No Abstract]   [Full Text] [Related]  

  • 6. Electron paramagnetic resonance of nitrogenase and nitrogenase components from Clostridium pasteurianum W5 and Azotobacter vinelandii OP.
    Orme-Johnson WH; Hamilton WD; Jones TL; Tso MY; Burris RH; Shah VK; Brill WJ
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3142-5. PubMed ID: 4343957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP hydrolysis and electron transfer in the nitrogenase reaction with different combinations of the iron protein and the molybdenum-iron protein.
    Ljones T; Burris RH
    Biochim Biophys Acta; 1972 Jul; 275(1):93-101. PubMed ID: 5049020
    [No Abstract]   [Full Text] [Related]  

  • 8. Nitrogenase IX. Effect of the MgATP generator on the catalytic and EPR properties of the enzyme in vitro.
    Davis LC; Orhme-Johnson WH
    Biochim Biophys Acta; 1976 Nov; 452(1):42-58. PubMed ID: 186124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the existence of a fully reduced state of molybdoferredoxin during the functioning of nitrogenase, and the order of electron transfer from reduced ferredoxin.
    Walker MN; Mortenson LE
    J Biol Chem; 1974 Oct; 249(19):6356-8. PubMed ID: 4370921
    [No Abstract]   [Full Text] [Related]  

  • 10. Nitrogenase from Clostridium pasteurianum. Changes in optical absorption spectra during electron transfer and effects of ATP, inhibitors and alternative substrates.
    Ljones T
    Biochim Biophys Acta; 1973 Sep; 321(1):103-13. PubMed ID: 4750759
    [No Abstract]   [Full Text] [Related]  

  • 11. Nitrogenase.
    Eady RR; Postgate JR
    Nature; 1974 Jun; 249(460):805-10. PubMed ID: 4134899
    [No Abstract]   [Full Text] [Related]  

  • 12. On the structure and function of nitrogenase from Clostridium pasteurianum W5.
    Zumft WG; Cretney WC; Huang TC; Mortenson LE; Palmer G
    Biochem Biophys Res Commun; 1972 Sep; 48(6):1525-32. PubMed ID: 4342714
    [No Abstract]   [Full Text] [Related]  

  • 13. Electron paramagnetic resonance studies on nitrogenase. I. The properties of molybdoferredoxin and azoferredoxin.
    Palmer G; Multani JS; Cretney WC; Zumft WG; Mortenson LE
    Arch Biochem Biophys; 1972 Nov; 153(1):325-32. PubMed ID: 4346635
    [No Abstract]   [Full Text] [Related]  

  • 14. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex.
    Lanzilotta WN; Fisher K; Seefeldt LC
    Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical evolution of a nitrogenase model. VI. The reduction of CN-, N3-, N2O, N2, and other substrates by molybdocysteine catalysts in the presence of nucleoside phosphates.
    Schrauzer GN; Kiefer GW; Doemeny PA; Kisch H
    J Am Chem Soc; 1973 Aug; 95(17):5582-92. PubMed ID: 4354833
    [No Abstract]   [Full Text] [Related]  

  • 16. Oxidation reduction properties of nitrogenase from Clostridium pasteurianum W5.
    Walker M; Mortenson LE
    Biochem Biophys Res Commun; 1973 Sep; 54(2):669-76. PubMed ID: 4756793
    [No Abstract]   [Full Text] [Related]  

  • 17. Evidence for a catalytic-centre heterogeneity of molybdoferredoxin from Clostridium pasteurianum.
    Zumft WG; Mortensson LE
    Eur J Biochem; 1973 Jun; 35(3):401-9. PubMed ID: 4354333
    [No Abstract]   [Full Text] [Related]  

  • 18. Some properties of the nitrogenase proteins from Clostridium pasteurianum. Molecular weight, subunit structure, isoelectric point and EPR spectra.
    Tso MY
    Arch Microbiol; 1974; 99(1):71-80. PubMed ID: 4369192
    [No Abstract]   [Full Text] [Related]  

  • 19. Continuous spectrophotometric assay for nitrogenase.
    Ljones T; Burris RH
    Anal Biochem; 1972 Feb; 45(2):448-52. PubMed ID: 5060601
    [No Abstract]   [Full Text] [Related]  

  • 20. Nitrogenase of Klebsiella pneumoniae. Kinetics of the dissociation of oxidized iron protein from molybdenum-iron protein: identification of the rate-limiting step for substrate reduction.
    Thorneley RN; Lowe DJ
    Biochem J; 1983 Nov; 215(2):393-403. PubMed ID: 6316927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.