These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 4350344)

  • 41. Two different mechanisms for urea action at the LAC and TNA operons in Escherichia coli.
    Blazy B; Ullmann A
    Mol Gen Genet; 1990 Feb; 220(3):419-24. PubMed ID: 2160052
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of initiation and repression of in vitro transcription of the lac operon of Escherichia coli.
    Eron L; Block R
    Proc Natl Acad Sci U S A; 1971 Aug; 68(8):1828-32. PubMed ID: 4331560
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An Escherichia coli rpoB mutation that inhibits transcription of catabolite-sensitive operons.
    Rockwell P; Gottesman ME
    J Mol Biol; 1991 Nov; 222(2):189-96. PubMed ID: 1660071
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The location of the repressor binding sites in the lac operon.
    Reznikoff WS; Winter RB; Hurley CK
    Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2314-8. PubMed ID: 4601586
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The -45 region of the Escherichia coli lac promoter: CAP-dependent and CAP-independent transcription.
    Czarniecki D; Noel RJ; Reznikoff WS
    J Bacteriol; 1997 Jan; 179(2):423-9. PubMed ID: 8990294
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Specific sequences downstream from -6 are not essential for proper and efficient in vitro utilization of the Escherichia coli lactose promoter.
    Lorimer DD; Cao JL; Revzin A
    J Mol Biol; 1990 Nov; 216(2):275-87. PubMed ID: 2254929
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isolation and characterization of mutations creating high-efficiency transcription initiation signals within the trp operon of Escherichia coli.
    McPartland A; Somerville RL
    J Bacteriol; 1976 Nov; 128(2):557-72. PubMed ID: 789357
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hypersensitivity to catabolite repression in the L-arabinose operon of Escherichia coli B/r is trans acting.
    Sheppard DE; Eleuterio M
    J Bacteriol; 1976 May; 126(2):1014-6. PubMed ID: 177399
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RNA polymerase mutant able to express in vivo and in vitro the lactose operon in the absence of the cAMP-CRP complex.
    Guidi-Rontani C; Spassky A
    J Mol Biol; 1985 Dec; 186(3):527-32. PubMed ID: 2419569
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The roles of the lambda c3 gene and the Escherichia coli catabolite gene activation system in the establishment of lysogeny by bacteriophage lambda.
    Belfort M; Wulff D
    Proc Natl Acad Sci U S A; 1974 Mar; 71(3):779-82. PubMed ID: 4362632
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hybrid Bordetella pertussis-Escherichia coli RNA polymerases: selectivity of promoter activation.
    Steffen P; Ullmann A
    J Bacteriol; 1998 Mar; 180(6):1567-9. PubMed ID: 9515928
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A mutant Ebg enzyme that converts lactose into an inducer of the lac operon.
    Rolseth SJ; Fried VA; Hall BG
    J Bacteriol; 1980 Jun; 142(3):1036-9. PubMed ID: 6769907
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic and biochemical investigation of the Escherichia coli mutant hfl-1 which is lysogenized at high frequency by bacteriophage lambda.
    Belfort M; Wulff DL
    J Bacteriol; 1973 Jul; 115(1):299-306. PubMed ID: 4352176
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genetic characterization of mutations which affect catabolite-sensitive operons in Escherichia coli, including deletions of the gene for adenyl cyclase.
    Brickman E; Soll L; Beckwith J
    J Bacteriol; 1973 Nov; 116(2):582-7. PubMed ID: 4583241
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fusion of the Escherichia coli lac genes to the ara promoter: a general technique using bacteriophage Mu-1 insertions.
    Casadaban MJ
    Proc Natl Acad Sci U S A; 1975 Mar; 72(3):809-13. PubMed ID: 1093171
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Studies with cyclic adenosine monophosphate receptor and stimulation of in vitro transcription of the Gal operon.
    Anderson WB; Gottesman ME; Pastan I
    J Biol Chem; 1974 Jun; 249(11):3592-6. PubMed ID: 4364661
    [No Abstract]   [Full Text] [Related]  

  • 57. Transient repression of catabolite-sensitive enzyme synthesis elicited by 2,4-dinitrophenol.
    Oki R
    J Bacteriol; 1975 Sep; 123(3):815-23. PubMed ID: 169228
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Non-specific DNA binding of genome regulating proteins as a biological control mechanism: I. The lac operon: equilibrium aspects.
    von Hippel PH; Revzin A; Gross CA; Wang AC
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4808-12. PubMed ID: 4612528
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose.
    Wong P; Gladney S; Keasling JD
    Biotechnol Prog; 1997; 13(2):132-43. PubMed ID: 9104037
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mutations partially inactivating the lactose repressor of Escherichia coli.
    Shineberg B
    J Bacteriol; 1974 Aug; 119(2):500-7. PubMed ID: 4604800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.