These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 435088)

  • 1. [Quantitative characteristics of cells formed during early postnatal ontogenesis in the cytoarchitectonic layers of the parietal region of the cortex in normal mice and following brain injuries].
    Dadasheva OA; Kesarev VS; Reznikov KIu
    Arkh Anat Gistol Embriol; 1979 Feb; 76(2):17-23. PubMed ID: 435088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Postnatal histogenesis and cell proliferation in the parietal region of mouse neocortex under normal conditions and following brain injury].
    Reznikov KIu; Verbitskaia LB; Kesarev VS; Viktorov IV
    Biull Eksp Biol Med; 1978 Feb; 85(2):234-7. PubMed ID: 630104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative study of cells formed in early postnatal development in cytoarchitectonic layers of the normal parietal cortex and after brain trauma.
    Dadasheva OA; Kesarev VS; Reznikov KYu
    Neurosci Behav Physiol; 1980; 10(6):506-11. PubMed ID: 7219690
    [No Abstract]   [Full Text] [Related]  

  • 4. [Migration of glial cells in the brains of intact mice and mice with brain injuries during the first hours after DNA synthesis and cell division].
    Reznikov KIu
    Ontogenez; 1975; 6(1):71-9. PubMed ID: 1214988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Incorporation of 3H-thymidine into glial cells of the parietal region and cells of the subependymal zone of two-week and adult mice under normal conditions and following brain injury].
    Reznikov KIu
    Ontogenez; 1975; 6(2):169-76. PubMed ID: 1219556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of the three main types of glial cells of cortex and corpus callosum in rats handled during suckling or exposed to enriched, control and impoverished environments following weaning.
    Szeligo F; Leblond CP
    J Comp Neurol; 1977 Mar; 172(2):247-63. PubMed ID: 838881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates.
    Jones EG; Burton H
    J Comp Neurol; 1976 Jul; 168(2):197-247. PubMed ID: 821974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation-induced interference with postnatal hippocampal cytogenesis in rats and its long-term effects on the acquisition of neurons and glia.
    Baver SA; Altman J
    J Comp Neurol; 1975 Sep; 163(1):1-19. PubMed ID: 1159108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of protein-energy deficiency on the composition of the glial population of the mouse neocortex].
    Medvedev DI; Savrova OB; Iakovleva TV
    Arkh Anat Gistol Embriol; 1987 Jun; 92(6):17-9. PubMed ID: 3115234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal and reimplantation of the parietal cortex of mice during the first nine days of life: consequences for the barrelfield.
    Andrés F
    J Neural Transplant; 1989; 1(1):11-22. PubMed ID: 2519518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative and ultrastructural changes in glia and pericytes in the parietal cortex of the aging rat.
    Peinado MA; Quesada A; Pedrosa JA; Torres MI; Martinez M; Esteban FJ; Del Moral ML; Hernandez R; Rodrigo J; Peinado JM
    Microsc Res Tech; 1998 Oct; 43(1):34-42. PubMed ID: 9829457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Associative connections of the parietal cortex in cats].
    Kazakov VN; Shevchenko NI; Krakhotkina ED
    Neirofiziologiia; 1981; 13(1):3-6. PubMed ID: 7219602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Quantitative analysis of the mosaic formation of neurons of the neocortex and hippocampus of the mouse].
    Reznikov KIu; Nazarevskaia GD; Deriabin VE
    Biull Eksp Biol Med; 1987 Jun; 103(6):735-8. PubMed ID: 3297195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The effect of restoring adequate nutrition on the relation between nerve and glial cells in the cerebellar cortex of malnourished mice].
    Medvedev DI; Iakovleva TV; Savrova OB
    Vopr Pitan; 1990; (6):69-71. PubMed ID: 2293456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radioautographic evidence for slow astrocyte turnover and modest oligodendrocyte production in the corpus callosum of adult mice infused with 3H-thymidine.
    McCarthy GF; Leblond CP
    J Comp Neurol; 1988 May; 271(4):589-603. PubMed ID: 3385018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions.
    Eickhoff SB; Schleicher A; Zilles K; Amunts K
    Cereb Cortex; 2006 Feb; 16(2):254-67. PubMed ID: 15888607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Native astrocytes do not migrate de novo or after local trauma.
    Hatton JD; Finkelstein JP; U HS
    Glia; 1993 Sep; 9(1):18-24. PubMed ID: 8244528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Possibilities of restoring the glial population of the neocortex after protein-energy insufficiency].
    Medvedev DI; Savrova OB; Iakovleva TV
    Arkh Anat Gistol Embriol; 1989 Sep; 97(9):25-30. PubMed ID: 2513794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radial organization of thalamic projections to the neocortex in the mouse.
    Frost DO; Caviness VS
    J Comp Neurol; 1980 Nov; 194(2):369-93. PubMed ID: 7440806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons.
    Leavitt BR; Hernit-Grant CS; Macklis JD
    Exp Neurol; 1999 May; 157(1):43-57. PubMed ID: 10222107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.