These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4351061)

  • 1. Proton spin lattice relaxation time measurements at 90MHz and 270 MHz.
    Coates HB; McLaughlan KA; Campbell ID; McColl CE
    Biochim Biophys Acta; 1973 May; 310(1):1-10. PubMed ID: 4351061
    [No Abstract]   [Full Text] [Related]  

  • 2. Haloacetol phosphates. A comparative study of the active sites of yeast and muscle triose phosphate isomerase.
    Norton IL; Hartman FC
    Biochemistry; 1972 Nov; 11(24):4435-41. PubMed ID: 4569279
    [No Abstract]   [Full Text] [Related]  

  • 3. Analysis of a crystalline mutarotase from bovine kidney cortex.
    Fishman PH; Pentchev PG; Bailey JM
    Biochemistry; 1973 Jun; 12(13):2490-5. PubMed ID: 4709943
    [No Abstract]   [Full Text] [Related]  

  • 4. Physical properties of some nonpolar polypeptidyl proteins.
    Krausz LM; Becker RR
    J Biol Chem; 1968 Sep; 243(17):4606-14. PubMed ID: 5684011
    [No Abstract]   [Full Text] [Related]  

  • 5. A nonenzyme-coupled assay for triosephosphate isomerase based upon circular dichroism of glyceraldehyde-3-phosphate.
    Fahey RC; Fischer EF
    Anal Biochem; 1974 Feb; 57(2):547-54. PubMed ID: 4819742
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies of the histidine residues of triose phosphate isomerase by proton magnetic resonance and x-ray crystallography.
    Browne CA; Campbell ID; Kiener PA; Phillips DC; Waley SG; Wilson IA
    J Mol Biol; 1976 Jan; 100(3):319-43. PubMed ID: 3655
    [No Abstract]   [Full Text] [Related]  

  • 7. Nuclear magnetic resonance studies of amino acids and proteins. Deuterium nuclear magnetic resonance relaxation of deuteriomethyl-labeled amino acids in crystals and in Halobacterium halobium and Escherichia coli cell membranes.
    Keniry MA; Kintanar A; Smith RL; Gutowsky HS; Oldfield E
    Biochemistry; 1984 Jan; 23(2):288-98. PubMed ID: 6365162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus-31 nuclear magnetic resonance of dihydroxyacetone phosphate in the presence of triosephosphate isomerase. The question of nonproductive binding of the substrate hydrate.
    Webb MR; Standring DN; Knowles JR
    Biochemistry; 1977 Jun; 16(12):2738-41. PubMed ID: 889785
    [No Abstract]   [Full Text] [Related]  

  • 9. Nuclear magnetic resonance spectroscopy: reinvestigation of carbon-13 spin-lattice relaxation time measurements of amino acids.
    Pearson H; Gust D; Armitage IM; Huber H; Roberts JD; Stark RE; Vold RR; Vold RL
    Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1599-601. PubMed ID: 165516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proposed conformations of oxytocin and selected analogs in dimethyl sulfoxide as deduced from proton magnetic resonance studies.
    Brewster AI; Hruby VJ; Glasel JA; Tonelli AE
    Biochemistry; 1973 Dec; 12(26):5294-304. PubMed ID: 4760494
    [No Abstract]   [Full Text] [Related]  

  • 11. CO2 adducts of certain amino acids, peptides, and sperm whale myoglobin studied by carbon 13 and proton nuclear magnetic resonance.
    Morrow JS; Keim P; Gurd FR
    J Biol Chem; 1974 Dec; 249(23):7484-94. PubMed ID: 4436319
    [No Abstract]   [Full Text] [Related]  

  • 12. Homonuclear indor spectroscopy as a means of simplifying and analyzing proton magnetic resonance spectra of peptides and as a basis for determining secondary and tertiary conformations of complex peptides.
    Gibbons WA; Alms H; Bockman RS; Wyssbrod HR
    Biochemistry; 1972 Apr; 11(9):1721-5. PubMed ID: 4337558
    [No Abstract]   [Full Text] [Related]  

  • 13. Identification of site in triose phosphate isomerase labelled by glycidol phosphate.
    Waley SG; Miller JC; Rose IA; O'Connell EL
    Nature; 1970 Jul; 227(5254):181. PubMed ID: 5428408
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on the conformation and interactions of elastin. Proton magnetic resonance of the repeating pentapeptide.
    Urry DW; Cunningham WD; Ohnishi T
    Biochemistry; 1974 Jan; 13(3):609-16. PubMed ID: 4810070
    [No Abstract]   [Full Text] [Related]  

  • 15. Nuclear magnetic resonance studies of selectively hindered internal motion of substrate analogs at the active site of pyruvate kinase.
    Nowak T; Mildvan AS
    Biochemistry; 1972 Jul; 11(15):2813-8. PubMed ID: 4625313
    [No Abstract]   [Full Text] [Related]  

  • 16. Proton relaxation studies of diphosphopyridine coenzymes.
    Lee CY; Oppenheimer NJ; Kaplan NO
    Biochem Biophys Res Commun; 1974 Sep; 60(2):838-44. PubMed ID: 4371396
    [No Abstract]   [Full Text] [Related]  

  • 17. Conformational mobility of the pyrrolidine ring of proline in peptides and peptide hormones as manifest in carbon 13 spin-lattice relaxation times.
    Deslauriers R; Smith IC; Walter R
    J Biol Chem; 1974 Nov; 249(21):7006-10. PubMed ID: 4371430
    [No Abstract]   [Full Text] [Related]  

  • 18. [N- and C-terminal amino acids of human ceruloplasmin].
    Konnova LA; Vasilets IM; ShavlovskiÄ­ MM
    Biokhimiia; 1969; 34(5):1008-14. PubMed ID: 5364618
    [No Abstract]   [Full Text] [Related]  

  • 19. The prospects for carbon-13 nuclear magnetic resonance studies in enzymology.
    Gurd FR; Keim P
    Methods Enzymol; 1973; 27():836-911. PubMed ID: 4589738
    [No Abstract]   [Full Text] [Related]  

  • 20. Chemical shift nonequivalence in proton magnetic resonance spectra of glycyl peptides.
    Morlino VJ; Martin RB
    J Am Chem Soc; 1967 Jun; 89(13):3107-11. PubMed ID: 6042760
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.