These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 4351387)

  • 1. Glucose fermentation products in Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H 2 .
    Iannotti EL; Kafkewitz D; Wolin MJ; Bryant MP
    J Bacteriol; 1973 Jun; 114(3):1231-40. PubMed ID: 4351387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FUMARATE REDUCTION AND ITS ROLE IN THE DIVERSION OF GLUCOSE FERMENTATION BY STREPTOCOCCUS FAECALIS.
    DEIBEL RH; KVETKAS MJ
    J Bacteriol; 1964 Oct; 88(4):858-64. PubMed ID: 14219047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirement of succinate for the growth of Vibrio succinogenes.
    Niederman RA; Wolin MJ
    J Bacteriol; 1972 Feb; 109(2):546-9. PubMed ID: 5058443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioconversion of Cellulose to Acetate with Pure Cultures of Ruminococcus albus and a Hydrogen-Using Acetogen.
    Miller TL; Wolin MJ
    Appl Environ Microbiol; 1995 Nov; 61(11):3832-5. PubMed ID: 16535158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of hydrogen and formate by Ruminococcus albus.
    Miller TL; Wolin MJ
    J Bacteriol; 1973 Nov; 116(2):836-46. PubMed ID: 4745433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen formation and its regulation in Ruminococcus albus: involvement of an electron-bifurcating [FeFe]-hydrogenase, of a non-electron-bifurcating [FeFe]-hydrogenase, and of a putative hydrogen-sensing [FeFe]-hydrogenase.
    Zheng Y; Kahnt J; Kwon IH; Mackie RI; Thauer RK
    J Bacteriol; 2014 Nov; 196(22):3840-52. PubMed ID: 25157086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes.
    Miller TL
    Arch Microbiol; 1978 May; 117(2):145-52. PubMed ID: 678020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.
    Shi Y; Odt CL; Weimer PJ
    Appl Environ Microbiol; 1997 Feb; 63(2):734-42. PubMed ID: 9023950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentation of fumarate and L-malate by Clostridium formicoaceticum.
    Dorn M; Andreesen JR; Gottschalk G
    J Bacteriol; 1978 Jan; 133(1):26-32. PubMed ID: 618841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z.
    Van der Werf MJ; Guettler MV; Jain MK; Zeikus JG
    Arch Microbiol; 1997 Jun; 167(6):332-42. PubMed ID: 9148774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations.
    McKinlay JB; Vieille C
    Metab Eng; 2008 Jan; 10(1):55-68. PubMed ID: 17964838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium.
    Scheifinger CC; Wolin MJ
    Appl Microbiol; 1973 Nov; 26(5):789-95. PubMed ID: 4796955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of S organism isolated from Methanobacillus omelianskii.
    Reddy CA; Bryant MP; Wolin MJ
    J Bacteriol; 1972 Feb; 109(2):539-45. PubMed ID: 5058442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production.
    Odenyo AA; Mackie RI; Stahl DA; White BA
    Appl Environ Microbiol; 1994 Oct; 60(10):3688-96. PubMed ID: 7527201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways of anaerobic acetate utilization in Escherichia coli and Aerobacter cloacae.
    Higgins TE; Johnson MJ
    J Bacteriol; 1970 Mar; 101(3):885-91. PubMed ID: 4908786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing rumen fermentation: effect of hydrogen on formation of propionate.
    Schulman MD; Valentino D
    J Dairy Sci; 1976 Aug; 59(8):1444-51. PubMed ID: 956483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The chemostat study of metabolic distribution in extreme-thermophilic (70°C) mixed culture fermentation.
    Zhang F; Chen Y; Dai K; Zeng RJ
    Appl Microbiol Biotechnol; 2014 Dec; 98(24):10267-73. PubMed ID: 25341404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity.
    Flikweert MT; Kuyper M; van Maris AJ; Kötter P; van Dijken JP; Pronk JT
    Biotechnol Bioeng; 1999; 66(1):42-50. PubMed ID: 10556793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium.
    Latham MJ; Wolin MJ
    Appl Environ Microbiol; 1977 Sep; 34(3):297-301. PubMed ID: 562131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in production of ethanol, acids and H2 from glucose by the fecal flora of a 16- to 158-d-old breast-fed infant.
    Wolin MJ; Yerry S; Miller TL; Zhang Y; Bank S
    J Nutr; 1998 Jan; 128(1):85-90. PubMed ID: 9430607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.