These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 43516)

  • 1. Effects of olfactory bulbectomy and estrogen on tyrosine hydroxylase and glutamic acid decarboxylase in the nigrostriatal and mesolimbic dopamine systems of adult female rats.
    Tyler JL; Gordon JH; Gorski RA
    Pharmacol Biochem Behav; 1979 Nov; 11(5):549-52. PubMed ID: 43516
    [No Abstract]   [Full Text] [Related]  

  • 2. Kernicterus: effect on choline acetyltransferase, glutamic acid decarboxylase and tyrosine hydroxylase activities in the brain of the Gunn rat.
    Ohno T
    Brain Res; 1980 Aug; 196(1):282-5. PubMed ID: 6105009
    [No Abstract]   [Full Text] [Related]  

  • 3. Localization of glutamate decarboxylase, choline acetyltransferase, and DOPA decarboxylase in mesolimbic structures.
    Fonnum F; Iversen E; Walaas I
    Adv Biochem Psychopharmacol; 1977; 16():417-21. PubMed ID: 302083
    [No Abstract]   [Full Text] [Related]  

  • 4. Increased striatal glutamate decarboxylase after lesions of the nigrostriatal pathway.
    Vincent SR; Nagy JI; Fibiger HC
    Brain Res; 1978 Mar; 143(1):168-73. PubMed ID: 24494
    [No Abstract]   [Full Text] [Related]  

  • 5. A striatal source of glutamic acid decarboxylase activity in the substantia nigra.
    Nagy JI; Fibiger HC
    Brain Res; 1980 Apr; 187(1):237-42. PubMed ID: 7357470
    [No Abstract]   [Full Text] [Related]  

  • 6. Comparative effects of estrogens and prolactin on nigral and striatal GAD activity.
    Nicoletti F; Patti F; Ferrara N; Canonico PL; Giammona G; Condorelli DF; Scapagnini U
    Brain Res; 1982 Jan; 232(1):238-41. PubMed ID: 7055706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of estrogen on dopamine turnover, glutamic acid decarboxylase activity and lordosis behavior in septal lesioned female rats.
    Gordon JH; Nance DM; Wallis CJ; Gorski RA
    Brain Res Bull; 1977; 2(5):341-6. PubMed ID: 922512
    [No Abstract]   [Full Text] [Related]  

  • 8. Localization of nigral dopamine-sensitive adenylate cyclase on neurons originating from the corpus striatum.
    Spano PF; Trabucchi M; Di Chiara G
    Science; 1977 Jun; 196(4296):1343-5. PubMed ID: 17159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic changes in the activities and amounts of neurotransmitter-synthesizing enzymes in mesolimbic and other central catecholamine neurons in response to axonal injury and during collateral sprouting.
    Reis DJ; Gilad GM; Pickel VM; Ross RA; Joh TH
    Adv Biochem Psychopharmacol; 1977; 16():331-41. PubMed ID: 18886
    [No Abstract]   [Full Text] [Related]  

  • 10. Neurochemical plasticity: increased glutamic acid decarboxylase activity in the olfactory tubercle following olfactory bulb removal during postnatal development.
    Gilad GM; Reis DJ
    Brain Res; 1979 Nov; 177(1):200-3. PubMed ID: 40670
    [No Abstract]   [Full Text] [Related]  

  • 11. Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain.
    Lindefors N; Brene S; Herrera-Marschitz M; Persson H
    Exp Brain Res; 1989; 77(3):611-20. PubMed ID: 2572447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible changes in the activities and amounts of tyrosine hydroxylase in dopamine neurons of the substantia nigra in response to axonal injury as studied by immunochemical and immunocytochemical methods.
    Reis DJ; Gilad G; Pickel VM; Joh TH
    Brain Res; 1978 Apr; 144(2):325-42. PubMed ID: 25123
    [No Abstract]   [Full Text] [Related]  

  • 13. Sulpiride effects on nigral and striatal glutamic acid decarboxylase activity: a possible involvement of prolactin.
    Nicoletti F; Canonico PL; Patti F; Rampello L; Condorelli DF; giammona G; Di Giorgio RM; Scapagnini U
    Eur J Pharmacol; 1982 Jan; 77(2-3):131-5. PubMed ID: 7060633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in tyrosine hydroxylase, glutamic acid decarboxylase and choline acetyltransferase after local microinoculation of scrapie agent into the nigrostriatal system of the golden hamster.
    Durand-Gorde JM; Bert J; Nieoullon A
    Brain Res; 1985 Aug; 341(2):243-51. PubMed ID: 2864098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of L-glutamic acid decarboxylase in different regions of baboon brain.
    Kataoka K; Nakamura Y; Hassler R; Bak IJ; Kim JS
    Folia Psychiatr Neurol Jpn; 1975; 29(4):361-70. PubMed ID: 821834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible reduction of tyrosine hydroxylase enzyme protein during the retrograde reaction in mesolimbic dopaminergic neurons.
    Gilad G; Reis DJ
    Brain Res; 1978 Jun; 149(1):141-53. PubMed ID: 77710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible involvement of prolactin in sulpiride-induced changes in nigral and striatal GAD activity.
    Scapagnini U; Canonico PL; Patti F; Condorelli DF; Nicoletti F
    Ann Ist Super Sanita; 1982; 18(1):27-9. PubMed ID: 7171172
    [No Abstract]   [Full Text] [Related]  

  • 18. Time course and localization of the effects of estrogen on glutamic acid decarboxylase activity.
    McGinnis MY; Gordon JH; Gorski RA
    J Neurochem; 1980 Apr; 34(4):785-92. PubMed ID: 7359131
    [No Abstract]   [Full Text] [Related]  

  • 19. Mouse brain tyrosine hydroxylase and glutamic acid decarboxylase following treatment with adrenocorticotrophic hormone, vasopressin or corticosterone.
    Dunn AJ; Gildersleeve NB; Gray HE
    J Neurochem; 1978 Oct; 31(4):977-82. PubMed ID: 29946
    [No Abstract]   [Full Text] [Related]  

  • 20. Neurochemical sequelae of kainate injections in corpus striatum and substantia nigra of the rat.
    Schwarcz R; Coyle JT
    Life Sci; 1977 Feb; 20(3):431-6. PubMed ID: 14287
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.