These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 43516)
41. Chronic hypoxia in rats: alterations of striato-nigral angiotensin converting enzyme, GABA, and glutamic acid decarboxylase. Arregui A; Barer GR J Neurochem; 1980 Mar; 34(3):740-3. PubMed ID: 6243699 [No Abstract] [Full Text] [Related]
42. Effects of septal lesions and chronic estrogen treatment on dopamine, GABA and lordosis behavior in male rats. Gordon JH; Nance DM; Wallis CJ; Gorski RA Brain Res Bull; 1979; 4(1):85-9. PubMed ID: 37995 [TBL] [Abstract][Full Text] [Related]
43. Effects of depolarization on cofactor regulation of glutamic acid decarboxylase in substantia nigra synaptosomes. Miller LP; Walters JR J Neurochem; 1979 Aug; 33(2):533-9. PubMed ID: 469543 [No Abstract] [Full Text] [Related]
44. Effects of chronic neuroleptic treatment on tyrosine hydroxylase in dopaminergic terminals: comparisons between drugs and brain regions reveals different mechanisms of tolerance. Gale K Adv Biochem Psychopharmacol; 1980; 24():23-9. PubMed ID: 6105777 [No Abstract] [Full Text] [Related]
45. Decrease of glutamate decarboxylase (GAD)-immunoreactive nerve terminals in the substantia nigra after kainic acid lesion of the striatum. Oertel WH; Schmechel DE; Brownstein MJ; Tappaz ML; Ransom DH; Kopin IJ J Histochem Cytochem; 1981 Aug; 29(8):977-80. PubMed ID: 7024401 [TBL] [Abstract][Full Text] [Related]
46. L-glutamic acid decarboxylase in Parkinson's disease: effect of L-dopa therapy. Lloyd KG; Hornykiewicz O Nature; 1973 Jun; 243(5409):521-3. PubMed ID: 4743649 [No Abstract] [Full Text] [Related]
47. Dopaminergic parameters in the striatum and substantia nigra of seven strains of mice: higher density in striatum of CAST compared to BALB mice. Richter JA; Brenneman MG; Dlouhy SR; Ghetti B Neurochem Res; 1995 Apr; 20(4):395-400. PubMed ID: 7651576 [TBL] [Abstract][Full Text] [Related]
48. Time of appearance during development of differences in nigrostriatal tyrosine hydroxylase activity in two inbred mouse strains. Baker H; Joh TH; Reis DJ Brain Res; 1982 Jun; 256(2):157-65. PubMed ID: 6125248 [TBL] [Abstract][Full Text] [Related]
49. Stereospecificity of dopamine receptors involved in the regulation of the kinetic state of tyrosine hydroxylase in striatum and nucleus accumbens. Zivkovic B; Guidotti A; Costa E J Pharm Pharmacol; 1975 May; 27(5):359-60. PubMed ID: 239138 [No Abstract] [Full Text] [Related]
50. Distribution of choline acetyltransferase and glutamate decarboxylase within the substantia nigra and in other brain regions from control and Parkinsonian patients. Lloyd KG; Möhler H; Heitz P; Bartholini G J Neurochem; 1975 Dec; 25(6):789-95. PubMed ID: 1206397 [No Abstract] [Full Text] [Related]
51. Chronic selegiline administration transiently decreases tyrosine hydroxylase activity and mRNA in the rat nigrostriatal pathway. Vrana SL; Azzaro AJ; Vrana KE Mol Pharmacol; 1992 May; 41(5):839-44. PubMed ID: 1350320 [TBL] [Abstract][Full Text] [Related]
52. Striatal GABAergic neuronal activity is not reduced in Parkinson's disease. Perry TL; Javoy-Agid F; Agid Y; Fibiger HC J Neurochem; 1983 Apr; 40(4):1120-3. PubMed ID: 6131932 [TBL] [Abstract][Full Text] [Related]
53. The long-term effects of multiple doses of methamphetamine on neostriatal tryptophan hydroxylase, tyrosine hydroxylase, choline acetyltransferase and glutamate decarboxylase activities. Hotchkiss AJ; Morgan ME; Gibb JW Life Sci; 1979 Oct; 25(16):1373-8. PubMed ID: 42834 [No Abstract] [Full Text] [Related]
54. Early changes in tyrosine hydroxylase and glutamate decarboxylase activity in the golden hamster striatum after intracerebral inoculation of the nigrostriatal system with scrapie agent (strain 263 K). Durand-Gorde JM; Bert J; Nieoullon A Neurosci Lett; 1984 Sep; 51(1):37-42. PubMed ID: 6151152 [TBL] [Abstract][Full Text] [Related]
55. Immunocytochemical localization of glutamate decarboxylase in the substantia nigra of the rat. Ribak CE; Vaughn JE; Saito K; Barber R Res Publ Assoc Res Nerv Ment Dis; 1976; 55():205-11. PubMed ID: 1005902 [No Abstract] [Full Text] [Related]
56. Specificity of 6-hydroxydopamine-induced destruction of mesolimbic or nigrostriatal dopamine-containing terminals. Kelly PH; Joyce EM; Minneman KP; Phillipson OT Brain Res; 1977 Feb; 122(2):382-7. PubMed ID: 189878 [No Abstract] [Full Text] [Related]
57. Separate neuronal populations of the rat substantia nigra pars lateralis with distinct projection sites and transmitter phenotypes. Moriizumi T; Leduc-Cross B; Wu JY; Hattori T Neuroscience; 1992; 46(3):711-20. PubMed ID: 1372117 [TBL] [Abstract][Full Text] [Related]
58. Hypophysectomy-induced striatal hypersensitivity and mesolimbic hyposensitivity to apomorphine. Gordon JH Pharmacol Biochem Behav; 1983 Nov; 19(5):807-11. PubMed ID: 6139829 [TBL] [Abstract][Full Text] [Related]
59. Chronic intranigral administration of brain-derived neurotrophic factor produces striatal dopaminergic hypofunction in unlesioned adult rats and fails to attenuate the decline of striatal dopaminergic function following medial forebrain bundle transection. Lapchak PA; Beck KD; Araujo DM; Irwin I; Langston JW; Hefti F Neuroscience; 1993 Apr; 53(3):639-50. PubMed ID: 8098137 [TBL] [Abstract][Full Text] [Related]
60. The distribution of catecholamines, glutamate decarboxylase and choline acetyltransferase in layers of the rat olfactory bulb. Jaffé EH; Cuello AC Brain Res; 1980 Mar; 186(1):232-7. PubMed ID: 7357447 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]