These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 43516)
61. Influence of hyperprolactinemia induced by adenopituitary transplantation under the kidney capsule on the glutamic acid decarboxylase activity in various brain regions. Nicoletti F; Di Giorgio RM; Patti F; Rampello L; Condorelli DF; Amico-Roxas M; Canonico PL; Scapagnini U Arch Int Pharmacodyn Ther; 1981 Jan; 249(1):153-7. PubMed ID: 7224717 [TBL] [Abstract][Full Text] [Related]
62. The diurnal variations of glutamic acid decarboxylase activity in some discrete nuclei of rat brain. Kawahara R; Hazama H; Kamase H; Takeshita H; Kunimoto N; Kayano M Folia Psychiatr Neurol Jpn; 1980; 34(4):473-9. PubMed ID: 7196368 [TBL] [Abstract][Full Text] [Related]
63. Stoichiometry of tyrosine hydroxylase phosphorylation in the nigrostriatal and mesolimbic systems in vivo: effects of acute haloperidol and related compounds. Salvatore MF; Garcia-Espana A; Goldstein M; Deutch AY; Haycock JW J Neurochem; 2000 Jul; 75(1):225-32. PubMed ID: 10854265 [TBL] [Abstract][Full Text] [Related]
64. Regional differences in neurotransmitter enzymes during the development of the chick brain. Haywood J J Neurochem; 1978 May; 30(5):1195-7. PubMed ID: 26732 [No Abstract] [Full Text] [Related]
65. Effects of haloperidol and melatonin on the in situ activity of nigrostriatal tyrosine hydroxylase in male Syrian hamsters. Vriend J; Dreger L Life Sci; 2006 Mar; 78(15):1707-12. PubMed ID: 16263138 [TBL] [Abstract][Full Text] [Related]
66. [Neurotransmitters and experimental epilepsy. Study of the activity of various enzymes involved in their synthesis in rats with cobalt powder-induced epilepsy]. Altamura AC; Morosini F; Giordano PL Acta Neurol (Napoli); 1977; 32(5):525-34. PubMed ID: 22221 [No Abstract] [Full Text] [Related]
67. Effects of repeated immobilization stress on glutamate decarboxylase and choline acetyltransferase in discrete brain regions. Gottesfeld Z; Kvetnanský R; Kopin IJ; Jacobowitz DM Brain Res; 1978 Aug; 152(2):374-8. PubMed ID: 567089 [No Abstract] [Full Text] [Related]
68. Glutamic acid decarboxylase activity in striatal slices: persistent increase following depolarization. Gold BI; Simon JR; Roth RH Life Sci; 1978 Jan; 22(2):187-93. PubMed ID: 628309 [No Abstract] [Full Text] [Related]
70. Glutamate decarboxylase activity in brain regions of differentially-housed mice; a difference in the olfactory bulb. Blindermann JM; DeFeudis FV; Maitre M; Misslin R; Mandel P Experientia; 1980 Jul; 36(7):853-4. PubMed ID: 7398850 [TBL] [Abstract][Full Text] [Related]
71. Intracerebral injections of kainic acid and tetanus toxin: possible models for the signs of chorea and dystonia. McGeer PL; McGeer EG Adv Neurol; 1978; 21():331-8. PubMed ID: 32748 [No Abstract] [Full Text] [Related]
72. The distribution and origin of glutamate decarboxylase and choline acetyltransferase in ventral pallidum and other basal forebrain regions. Walaas I; Fonnum F Brain Res; 1979 Nov; 177(2):325-36. PubMed ID: 497834 [TBL] [Abstract][Full Text] [Related]
73. Modulation of olfactory bulb tyrosine hydroxylase and catecholamine transporter mRNA by estrogen. Dluzen DE; Park JH; Kim K Brain Res Mol Brain Res; 2002 Dec; 108(1-2):121-8. PubMed ID: 12480184 [TBL] [Abstract][Full Text] [Related]
74. Influence of olfactory bulbectomy and the serotonergic system upon intermale aggression and maternal behavior in the mouse. Neckers LM; Zarrow MX; Myers MM; Denenberg VH Pharmacol Biochem Behav; 1975; 3(4):545-50. PubMed ID: 242012 [TBL] [Abstract][Full Text] [Related]
75. Human fetal substantia nigra grafted to the dopamine-denervated striatum of immunosuppressed rats: evidence for functional reinnervation. Strömberg I; Bygdeman M; Goldstein M; Seiger A; Olson L Neurosci Lett; 1986 Nov; 71(3):271-6. PubMed ID: 2879264 [TBL] [Abstract][Full Text] [Related]
76. Aging of the rat mesostriatal system: differences between the nigrostriatal and the mesolimbic compartments. Cruz-Muros I; Afonso-Oramas D; Abreu P; Barroso-Chinea P; Rodríguez M; González MC; Hernández TG Exp Neurol; 2007 Mar; 204(1):147-61. PubMed ID: 17112516 [TBL] [Abstract][Full Text] [Related]
77. Effects of 6-hydroxydopamine lesions of the prefrontal cortex on tyrosine hydroxylase activity in mesolimbic and nigrostriatal dopamine systems. Rosin DL; Clark WA; Goldstein M; Roth RH; Deutch AY Neuroscience; 1992 Jun; 48(4):831-9. PubMed ID: 1352864 [TBL] [Abstract][Full Text] [Related]
78. Partial lesions of the dopaminergic nigrostriatal system in rat brain: biochemical characterization. Hefti F; Melamed E; Wurtman RJ Brain Res; 1980 Aug; 195(1):123-37. PubMed ID: 6105003 [TBL] [Abstract][Full Text] [Related]
80. GABA in the olfactory bulb and olfactory nucleus of the rat: the distribution of gamma-aminobutyric acid, glutamic acid decarboxylase, GABA transaminase and succinate semialdehyde dehydrogenase. Austin L; Recasens M; Mandel P J Neurochem; 1979 May; 32(5):1473-7. PubMed ID: 438817 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]