These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 4351718)

  • 1. Microbiochemical analysis of the arterial wall. I. Phosphofructokinase.
    Numano F; Sagara A; Takenobu M; Yamasawa S; Shimamoto T
    Atherosclerosis; 1973; 17(3):333-43. PubMed ID: 4351718
    [No Abstract]   [Full Text] [Related]  

  • 2. Phosphorylase activity in the arterial wall.
    Numano F; Kuroiwa T; Kobayashi M; Yamasawa S; Shimamoto T
    Atherosclerosis; 1973; 17(3):321-32. PubMed ID: 4197531
    [No Abstract]   [Full Text] [Related]  

  • 3. Phosphofructokinase-mediated activation of glycolysis in vascular smooth muscle depending on adenylate pool.
    Meisel P; Maul D; Grisk A
    Scr Med (Brno); 1975; 48(6-7):405-12. PubMed ID: 131046
    [No Abstract]   [Full Text] [Related]  

  • 4. Microbiochemical studies on changes of phosphofructokinase and glucose-6-phosphate dehydrogenase activity in intima and media of aortic wall of rabbits in the course of cholesterol feeding.
    Numano F; Kobayashi M; Kuroiwa T; Takahashi T; Moriya K
    Exp Mol Pathol; 1975 Feb; 22(1):133-41. PubMed ID: 123202
    [No Abstract]   [Full Text] [Related]  

  • 5. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. II. Oscillations of glycolytic intermediates and adenine nucleotides.
    Frenkel R
    Arch Biochem Biophys; 1968 Apr; 125(1):157-65. PubMed ID: 4296954
    [No Abstract]   [Full Text] [Related]  

  • 6. The phosphofructokinase and sorbitol dehydrogenase activities of arterial tissue in individuals of various ages.
    Ritz E; Kirk JE
    J Gerontol; 1967 Oct; 22(4):433-8. PubMed ID: 4228697
    [No Abstract]   [Full Text] [Related]  

  • 7. Lipid metabolizing enzymes of the arterial wall.
    Patelski J
    Dtsch Z Verdau Stoffwechselkr; 1978; 38(4):171-4. PubMed ID: 101368
    [No Abstract]   [Full Text] [Related]  

  • 8. Elevation of arterial phosphorfuctokinase activity associated with susceptibility to atherosclerosis in pigeons.
    Zemplényl T; Rosenstein AJ
    Atherosclerosis; 1975; 21(2):167-77. PubMed ID: 236761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the mechanism of antiatherosclerotic agents: microchemical studies on the in vitro effects of pyridinol carbamate and estrogen (premarin) on phosphofructokinase and malate dehydrogenase in the arterial wall.
    Numano F; Yamasawa S; Takano T; Shimamoto T
    Mech Ageing Dev; 1973; 2(1):43-53. PubMed ID: 4352474
    [No Abstract]   [Full Text] [Related]  

  • 10. [Recent acquisitions in the metabolic-enzymatic activity of the arterial walls in relation to atherogenesis].
    Perego MA; Di Palma A
    Recenti Prog Med; 1975 Mar; 58(3):233-88. PubMed ID: 124451
    [No Abstract]   [Full Text] [Related]  

  • 11. Mechanisms activating glycolysis in the brain in arterial hypoxia.
    Bachelard HS; Lewis LD; Pontén U; Siesjö BK
    J Neurochem; 1974 Mar; 22(3):395-401. PubMed ID: 4364341
    [No Abstract]   [Full Text] [Related]  

  • 12. Functional and structural changes of the arterial wall after sympathectomy.
    Marinescu V; Pausescu E; Pavelescu I; Fagarasanu D
    J Cardiovasc Surg (Torino); 1968; 9(1):54-63. PubMed ID: 4230661
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on the metabolism of embryonic bone and its modification by parathyroid extract.
    Herrmann-Erlee MP
    Curr Probl Clin Biochem; 1971; 3():257-83. PubMed ID: 4155667
    [No Abstract]   [Full Text] [Related]  

  • 14. Aberrant behavior of phosphofructokinase from otosclerotic stapedes. Biochemical evidence and the metabolic consequences.
    Holdsworth CE; Endahl GL; Soifer N; Richardson KE
    Arch Otolaryngol; 1973 Sep; 98(3):191-5. PubMed ID: 4355083
    [No Abstract]   [Full Text] [Related]  

  • 15. The regulation of glycolysis in mammalian erythrocytes.
    Rapoport S
    Essays Biochem; 1968; 4():69-103. PubMed ID: 4308730
    [No Abstract]   [Full Text] [Related]  

  • 16. [Microcalorimetric determination of thermochemical parameters of the phosphofructokinase reaction].
    Böhme HJ; Schellenberger W; Hofmann E
    Acta Biol Med Ger; 1975; 34(1):15-20. PubMed ID: 241184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies of rabbit muscle phosphofructokinase.
    Kee A; Griffin CC
    Arch Biochem Biophys; 1972 Apr; 149(2):361-8. PubMed ID: 4269395
    [No Abstract]   [Full Text] [Related]  

  • 18. Control of lens glycolysis.
    Lou MF; Kinoshita JH
    Biochim Biophys Acta; 1967 Aug; 141(3):547-59. PubMed ID: 4227814
    [No Abstract]   [Full Text] [Related]  

  • 19. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. I. Effects of modifiers of phosphofructokinase activity.
    Frenkel R
    Arch Biochem Biophys; 1968 Apr; 125(1):151-6. PubMed ID: 4296953
    [No Abstract]   [Full Text] [Related]  

  • 20. The location of lecithin-cholesterol transacylase activity in the atherosclerotic arterial wall.
    Abdulla YH; Adams CW; Bayliss OB
    J Atheroscler Res; 1969; 10(2):229-33. PubMed ID: 5381844
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.