These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 4352355)
21. [Bacterial nitrate reductases. I. Substrates, particulate state, and inhibitors of enzyme A]. Pichinoty F Arch Mikrobiol; 1969; 68(1):51-64. PubMed ID: 4985534 [No Abstract] [Full Text] [Related]
22. Bacterial attack on phenolic ethers. Dealkylation of higher ethers and further observations on O-demethylases. Cartwright NJ; Holdom KS; Broadbent DA Microbios; 1971 Mar; 3(10):113-30. PubMed ID: 4147485 [No Abstract] [Full Text] [Related]
23. Studies on denitrification. XI. Some properties of nitric oxide reductase. Miyata M; Matsubara T; Mori T J Biochem; 1969 Dec; 66(6):759-65. PubMed ID: 4391600 [No Abstract] [Full Text] [Related]
24. Studies on the affinity of methanol--and methane--utilizing bacteria for their carbon substrates. Harrison DE J Appl Bacteriol; 1973 Jun; 36(2):301-8. PubMed ID: 4747913 [No Abstract] [Full Text] [Related]
25. Substrate specificity of the purified primary alcohol dehydrogenases from methanol-oxidizing bacteria. Sperl GT; Forrest HS; Gibson DT J Bacteriol; 1974 May; 118(2):541-50. PubMed ID: 4828309 [TBL] [Abstract][Full Text] [Related]
29. Oxidation of methanol, formaldehyde and formic acid by methanol-utilizing yeast. Pilát P; Prokop A Folia Microbiol (Praha); 1976; 21(4):306-14. PubMed ID: 976879 [TBL] [Abstract][Full Text] [Related]
30. The influence of dissolved oxygen on Pseudomonas AM1 grown on methanol in continuous culture. Maclennan DG; Ousby JC; Vasey RB; Cotton NT J Gen Microbiol; 1971 Dec; 69(3):395-404. PubMed ID: 4947315 [No Abstract] [Full Text] [Related]
31. [Physiological and biochemical properties of a Pseudomonas methanolica culture under chemostat cultivation]. Ivanova II; Shul'govskaia EM Mikrobiologiia; 1975; 44(4):651-6. PubMed ID: 1100998 [TBL] [Abstract][Full Text] [Related]
32. Utilization of methanol by rhodospirillaceae. Quayle JR; Pfennig N Arch Microbiol; 1975 Mar; 102(3):193-8. PubMed ID: 239653 [TBL] [Abstract][Full Text] [Related]
33. [Chemolithotrophic growth of Hydrogenomonas H16 in a chemostat with electrolytic production of oxygen and hydrogen]. Schuster E; Schlegel HG Arch Mikrobiol; 1967; 58(4):380-409. PubMed ID: 4973018 [No Abstract] [Full Text] [Related]
34. Cytochrome c and the oxidation of C1 compounds in Pseudomonas AM1. Anthony C Biochem J; 1970 Oct; 119(5):54P-55P. PubMed ID: 5492832 [No Abstract] [Full Text] [Related]
35. Pseudomonas fluorescens biotype G, the dominant fluorescent pseudomonad in South Australian soils and wheat rhizospheres. Sands DC; Rovira AD J Appl Bacteriol; 1971 Mar; 34(1):261-75. PubMed ID: 4935441 [No Abstract] [Full Text] [Related]
37. Growth of microorganisms during exponential phase. Shaforostova LD; Ivanova II; Shul'govskaya EM; Rabotnova IL Biotechnol Bioeng Symp; 1973; 0(4-1):175-87. PubMed ID: 4213131 [No Abstract] [Full Text] [Related]
38. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Gibson DT; Koch JR; Kallio RE Biochemistry; 1968 Jul; 7(7):2653-62. PubMed ID: 4298226 [No Abstract] [Full Text] [Related]
39. The formation of a blue pigment in the bacterial oxidation of isonicotinic acid. Ensign JC; Rittenberg SC Arch Mikrobiol; 1965 Aug; 51(4):384-92. PubMed ID: 5884706 [No Abstract] [Full Text] [Related]
40. Oxidation of C1 compounds by particulate fractions from Methylococcus capsulatus: properties of methanol oxidase and methanol dehydrogenase. Wadzinski AM; Ribbons DW J Bacteriol; 1975 Jun; 122(3):1364-74. PubMed ID: 238947 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]