These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 435243)

  • 41. Thiolation of low-Mr phosphotyrosine protein phosphatase by thiol-disulfides.
    Degl'Innocenti D; Caselli A; Rosati F; Marzocchini R; Manao G; Camici G; Ramponi G
    IUBMB Life; 1999 Nov; 48(5):505-11. PubMed ID: 10637766
    [TBL] [Abstract][Full Text] [Related]  

  • 42. THIOL GROUPS IN DEOXYRIBONUCLEIC ACID NUCLEOTIDYLTRANSFERASE.
    KEIR HM; SHEPHERD JB
    Biochem J; 1965 May; 95(2):483-9. PubMed ID: 14340098
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inactivation of mouse liver glutathione S-transferase YfYf (Pi class) by ethacrynic acid and 5,5'-dithiobis-(2-nitrobenzoic acid).
    Phillips MF; Mantle TJ
    Biochem J; 1993 Aug; 294 ( Pt 1)(Pt 1):57-62. PubMed ID: 8363586
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence for the importance of cysteine and arginine residues in Pseudomonas fluorescens UK-1 pantoate dehydrogenase.
    Myöhänen T; Mäntsälä P
    Biochim Biophys Acta; 1980 Aug; 614(2):266-73. PubMed ID: 6773579
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for a single essential thiol in the yeast hexokinase molecule.
    Otieno S; Bhargava AK; Serelis D; Barnard EA
    Biochemistry; 1977 Sep; 16(19):4249-55. PubMed ID: 332226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reversed-phase chromatographic method for specific determination of glutathione in cultured malignant cells.
    Awasthi S; Ahmad F; Sharma R; Ahmad H
    J Chromatogr; 1992 Dec; 584(2):167-73. PubMed ID: 1484101
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reactivity of the cysteine and tyrosine residues of aspartate transaminase from chicken heart cytosol.
    Kochkina VM; Torchinskii YM
    Biochem Biophys Res Commun; 1975 Mar; 63(2):392-9. PubMed ID: 1125030
    [No Abstract]   [Full Text] [Related]  

  • 48. Cyst(e)ine residues of bovine white-matter proteolipid proteins. Role of disulphides in proteolipid conformation.
    Oteiza PI; Adamo AM; Aloise PA; Paladini AC; Paladini AA; Soto EF
    Biochem J; 1987 Jul; 245(2):507-13. PubMed ID: 3663175
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Suppression of high-affinity ligand binding to the major glutathione S-transferase from Galleria mellonella by physiological concentrations of glutathione.
    Clark AG; Carrol N
    Biochem J; 1986 Jan; 233(2):325-31. PubMed ID: 3954738
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regeneration of reduced-denatured seminal ribonuclease: effect of modification at cysteines 31 and 32.
    Smith GK; Schaffer SW
    Arch Biochem Biophys; 1980 Aug; 203(1):282-7. PubMed ID: 6250486
    [No Abstract]   [Full Text] [Related]  

  • 51. Chemical modification of lactose repressor protein using N-substituted maleimides.
    Brown RD; Matthews KS
    J Biol Chem; 1979 Jun; 254(12):5128-34. PubMed ID: 376506
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of chloramphenicol acetyltransferase variants in staphylococci. Purification, inhibitor studies and N-terminal sequences.
    Fitton JE; Shaw WV
    Biochem J; 1979 Feb; 177(2):575-82. PubMed ID: 435253
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Induced versus pre-existing asymmetry models for the half-of-the-sites reactivity effect in bovine liver uridine diphosphoglucose dehydrogenase.
    Franzen JS; Ashcom J; Marchetti P; Cardamone JJ; Feingold DS
    Biochim Biophys Acta; 1980 Aug; 614(2):242-55. PubMed ID: 7407191
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Studies on ligandin by affinity chromatography: its binding power and competition among cholephilic dyes (author's transl)].
    Sugimoto M
    Nihon Shokakibyo Gakkai Zasshi; 1979 Sep; 76(9):1793-801. PubMed ID: 513359
    [No Abstract]   [Full Text] [Related]  

  • 55. Separate identities of ligandin and the h-protein, a major protein to which carcinogenic hydrocarbons are covalently bound.
    Sarrif AM; Danenberg PV; Heidelberger C
    Biochem Biophys Res Commun; 1976 Jun; 70(3):869-77. PubMed ID: 820342
    [No Abstract]   [Full Text] [Related]  

  • 56. Effect of sulfhydryl group inhibitors on restriction endonuclease activities.
    Nath K
    Arch Biochem Biophys; 1981 Dec; 212(2):611-7. PubMed ID: 6275797
    [No Abstract]   [Full Text] [Related]  

  • 57. Radioimmunoassay of human ligandin.
    Sherman M; Bass NM; Campbell JA; Kirsch RE
    Hepatology; 1983; 3(2):162-9. PubMed ID: 6832708
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thiol-blocking reagents and phosphate acetyltransferase catalysis, and the assessment of protection by adsorbed molecules.
    Kyrtopoulos SA; Satchell DP
    Biochem J; 1974 Sep; 141(3):905-7. PubMed ID: 4463969
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evidence that the Ya and Yc subunits of glutathione transferase B (ligandin) are the products of separate genes.
    Beale D; Ketterer B; Carne T; Meyer D; Taylor JB
    Eur J Biochem; 1982 Sep; 126(3):459-63. PubMed ID: 7140737
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of substrates on the selective modification of the cysteinyl residues of D-amino acid transaminase.
    Soper TS; Jones WM; Manning JM
    J Biol Chem; 1979 Nov; 254(21):10901-5. PubMed ID: 500615
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.