BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 4352516)

  • 1. The occurrence of a glycine cleavage system in mammalian brain.
    Bruin WJ; Frantz BM; Sallach HJ
    J Neurochem; 1973 Jun; 20(6):1649-58. PubMed ID: 4352516
    [No Abstract]   [Full Text] [Related]  

  • 2. Significance of the glycine cleavage system in glycine and serine catabolism in avian liver.
    Yoshida T; Kikuchi G
    Arch Biochem Biophys; 1971 Aug; 145(2):658-68. PubMed ID: 4108152
    [No Abstract]   [Full Text] [Related]  

  • 3. Regional distribution and properties of the glycine cleavage system within the central nervous system of the rat: evidence for an endogenous inhibitor during in vitro assay.
    Daly EC; Nadi NS; Aprison MH
    J Neurochem; 1976 Jan; 26(1):179-85. PubMed ID: 176317
    [No Abstract]   [Full Text] [Related]  

  • 4. Pyridoxal phosphate and glutamate decarboxylase in subcellular particles of mouse brain and their relationship to convulsions.
    PĂ©rez de la Mora M; Feria-Velasco A; Tapia R
    J Neurochem; 1973 Jun; 20(6):1575-87. PubMed ID: 4719313
    [No Abstract]   [Full Text] [Related]  

  • 5. Pyridoxal-5-phosphate and other factors affecting the activity of alanine aminotransferase in the blood of sheep and cattle.
    Boyd JW; Roberts GW
    Res Vet Sci; 1974 Jan; 16(1):40-6. PubMed ID: 4819991
    [No Abstract]   [Full Text] [Related]  

  • 6. Glycine metabolism by rat liver mitochondria. 3. The glycine cleavage and the exchange of carboxyl carbon of glycine with bicarbonate.
    Sato T; Kochi H; Sato N; Kikuchi G
    J Biochem; 1969 Jan; 65(1):77-83. PubMed ID: 4306143
    [No Abstract]   [Full Text] [Related]  

  • 7. Reactions of glycine synthesis and glycine cleavage catalyzed by extracts of Arthrobacter globiformis grown on glycine.
    Kochi H; Kikuchi G
    Arch Biochem Biophys; 1969 Jul; 132(2):359-69. PubMed ID: 4389630
    [No Abstract]   [Full Text] [Related]  

  • 8. Glycine decarboxylase multienzyme complex. Purification and partial characterization from pea leaf mitochondria.
    Walker JL; Oliver DJ
    J Biol Chem; 1986 Feb; 261(5):2214-21. PubMed ID: 3080433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folate activity of human lymphocytes determined by measurement of serine synthesis.
    Ellegaard J; Esmann V
    Scand J Clin Lab Invest; 1973 Jan; 31(1):9-19. PubMed ID: 4687782
    [No Abstract]   [Full Text] [Related]  

  • 10. Glycine decarboxylation in the central nervous system.
    Uhr ML
    J Neurochem; 1973 Apr; 20(4):1005-9. PubMed ID: 4697865
    [No Abstract]   [Full Text] [Related]  

  • 11. Distribution of serine hydroxymethyltransferase and glycine transaminase in several areas of the central nervous system of the rat.
    Daly EC; Aprison MH
    J Neurochem; 1974 Jun; 22(6):877-85. PubMed ID: 4851413
    [No Abstract]   [Full Text] [Related]  

  • 12. Adenosylmethionine decarboxylase in developing rat brain.
    Schmidt GL; Cantoni GL
    J Neurochem; 1973 May; 20(5):1373-85. PubMed ID: 4716831
    [No Abstract]   [Full Text] [Related]  

  • 13. Resolution and characterization of the glycine-cleavage reaction in pea leaf mitochondria. Properties of the forward reaction catalysed by glycine decarboxylase and serine hydroxymethyltransferase.
    Bourguignon J; Neuburger M; Douce R
    Biochem J; 1988 Oct; 255(1):169-78. PubMed ID: 3143355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular distribution, age dependent variation and species differences of brain pyridoxal phosphate phosphatase.
    Bishayee S; Bachhawat BK
    Neurobiology; 1972; 2(1):12-20. PubMed ID: 4348862
    [No Abstract]   [Full Text] [Related]  

  • 15. Comparative study on major pathways of glycine and serine catabolism in vertebrate livers.
    Yoshida T; Kikuchi G
    J Biochem; 1972 Dec; 72(6):1503-16. PubMed ID: 4541693
    [No Abstract]   [Full Text] [Related]  

  • 16. Activities of 3,4-dihydroxy-L-phenylalanine and 5-hydroxy-L-tryptophan decarboxylases in rat brain: assay characteristics and distribution.
    Sims KL; Davis GA; Bloom FE
    J Neurochem; 1973 Feb; 20(2):449-64. PubMed ID: 4540567
    [No Abstract]   [Full Text] [Related]  

  • 17. Adenosine triphosphate synthesis and the natural electron acceptor for synthesis of serine from glycine in leaves.
    Bird IF; Cornelius MJ; Keys AJ; Whittingham CP
    Biochem J; 1972 Jun; 128(1):191-2. PubMed ID: 5085565
    [No Abstract]   [Full Text] [Related]  

  • 18. The glycine cleavage system: composition, reaction mechanism, and physiological significance.
    Kikuchi G
    Mol Cell Biochem; 1973 Jun; 1(2):169-87. PubMed ID: 4585091
    [No Abstract]   [Full Text] [Related]  

  • 19. Glycine synthesis by extracts of acetone powder of rat-liver mitochondria.
    Sato T; Motokawa Y; Kochi H; Kikuchi G
    Biochem Biophys Res Commun; 1967 Aug; 28(4):495-501. PubMed ID: 6052484
    [No Abstract]   [Full Text] [Related]  

  • 20. Multiple forms of monoamine oxidase in intact mitochondria as characterized by selective inhibitors and thermal stability: a comparison of eight mammalian species.
    Squires RF
    Adv Biochem Psychopharmacol; 1972; 5():355-70. PubMed ID: 5054207
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.