These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 435253)

  • 1. Comparison of chloramphenicol acetyltransferase variants in staphylococci. Purification, inhibitor studies and N-terminal sequences.
    Fitton JE; Shaw WV
    Biochem J; 1979 Feb; 177(2):575-82. PubMed ID: 435253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetyl-coenzyme A:alpha-glucosaminide N-acetyltransferase. Evidence for an active site histidine residue.
    Bame KJ; Rome LH
    J Biol Chem; 1986 Aug; 261(22):10127-32. PubMed ID: 3733705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloramphenicol acetyltransferase: enzymology and molecular biology.
    Shaw WV
    CRC Crit Rev Biochem; 1983; 14(1):1-46. PubMed ID: 6340955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide sequences of genes encoding the type II chloramphenicol acetyltransferases of Escherichia coli and Haemophilus influenzae, which are sensitive to inhibition by thiol-reactive reagents.
    Murray IA; Martinez-Suarez JV; Close TJ; Shaw WV
    Biochem J; 1990 Dec; 272(2):505-10. PubMed ID: 2268278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and comparison of chloramphenicol acetyltransferase variants.
    Zaidenzaig Y; Fitton JE; Packman LC; Shaw WV
    Eur J Biochem; 1979 Oct; 100(2):609-18. PubMed ID: 116849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3-(Bromoacetyl)chloramphenicol, an active site directed inhibitor for chloramphenicol acetyltransferase.
    Kleanthous C; Cullis PM; Shaw WV
    Biochemistry; 1985 Sep; 24(20):5307-13. PubMed ID: 3865688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of a reactive thiol group from the active site of chloramphenicol acetyltransferase.
    Lewendon A; Shaw WV
    Biochem J; 1990 Dec; 272(2):499-504. PubMed ID: 2268277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An enzymatic assay for chloramphenicol with partially purified chloramphenicol acetyltransferase.
    Daigneault R; Guitard M
    J Infect Dis; 1976 May; 133(5):515-22. PubMed ID: 1262716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of naturally occurring hybrid variants of chloramphenicol acetyltransferase to investigate subunit contacts.
    Packman LC; Shaw WV
    Biochem J; 1981 Feb; 193(2):541-52. PubMed ID: 7030311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the enzymatic inactivation of chloramphenicol by highly purified chloramphenicol acetyltransferase.
    Thibault G; Guitard M; Daigneault R
    Biochim Biophys Acta; 1980 Aug; 614(2):339-42. PubMed ID: 6996733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of chloramphenicol resistance in staphylococci: characterization and hybridization of variants of chloramphenicol acetyltransferase.
    Sands LC; Shaw WV
    Antimicrob Agents Chemother; 1973 Feb; 3(2):299-305. PubMed ID: 4790593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of chloramphenicol acetyltransferase from Flavobacterium CB60.
    Nolte G; Süssmuth R
    J Gen Microbiol; 1987 Aug; 133(8):2115-22. PubMed ID: 3327915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of [acyl-carrier-protein] acetyltransferase from Escherichia coli.
    Lowe PN; Rhodes S
    Biochem J; 1988 Mar; 250(3):789-96. PubMed ID: 3291856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Isolation and purification of the chloramphenicol-acetyltransferase from Y. pestis EV cells with extrachromosomal resistance to the antibiotic by affinity chromatography].
    Korobeĭnik NV; Mishan'kin BN
    Antibiotiki; 1981 Jan; 26(1):28-33. PubMed ID: 6938164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pKa of the catalytic histidine residue of chloramphenicol acetyltransferase.
    Lewendon A; Shaw WV
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):15-9. PubMed ID: 8439283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic studies of aminoglycoside acetyltransferase and phosphotransferase from Staphylococcus aureus RPAL. Relationship between the two activities.
    Martel A; Masson M; Moreau N; Le Goffic F
    Eur J Biochem; 1983 Jul; 133(3):515-21. PubMed ID: 6305650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of "buried" lysine residues in two variants of chloramphenicol acetyltransferase specified by R-factors.
    Packman LC; Shaw WV
    Biochem J; 1981 Feb; 193(2):525-39. PubMed ID: 6796049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific alkylation of a histidine residue in carnitine acetyltransferase by bromoacetyl-L-carnitine.
    Chase JF; Tubbs PK
    Biochem J; 1970 Feb; 116(4):713-20. PubMed ID: 5461620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance to fusidic acid in Escherichia coli mediated by the type I variant of chloramphenicol acetyltransferase. A plasmid-encoded mechanism involving antibiotic binding.
    Bennett AD; Shaw WV
    Biochem J; 1983 Oct; 215(1):29-38. PubMed ID: 6354181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanism of the enterococcal aminoglycoside 6'-N-acetyltransferase': role of GNAT-conserved residues in the chemistry of antibiotic inactivation.
    Draker KA; Wright GD
    Biochemistry; 2004 Jan; 43(2):446-54. PubMed ID: 14717599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.