These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 4354132)
1. Deoxycytidine uptake by isolated membrane vesicles from Escherichia coli K 12. Komatsu Y; Tanaka K Biochim Biophys Acta; 1973 Jul; 311(4):496-506. PubMed ID: 4354132 [No Abstract] [Full Text] [Related]
2. Adenosine uptake by isolated membrane vesicles from Escherichia coli K-12. Komatsu Y Biochim Biophys Acta; 1973 Dec; 330(2):206-21. PubMed ID: 4591127 [No Abstract] [Full Text] [Related]
3. Respiration dependent transport of proline by electron transport particles from mycobacterium phlei. Hirata H; Asano A; Brodie AF Biochem Biophys Res Commun; 1971 Jul; 44(2):368-74. PubMed ID: 4334137 [No Abstract] [Full Text] [Related]
4. Coupling of energy to active transport of amino acids in Escherichia coli. Simoni RD; Shallenberger MK Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2663-7. PubMed ID: 4341704 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles. Barnes EM; Kaback HR J Biol Chem; 1971 Sep; 246(17):5518-22. PubMed ID: 4330922 [No Abstract] [Full Text] [Related]
6. Transport of succinate in Escherichia coli. II. Characteristics of uptake and energy coupling with transport in membrane preparations. Rayman MK; Lo TC; Sanwal BD J Biol Chem; 1972 Oct; 247(19):6332-9. PubMed ID: 4568614 [No Abstract] [Full Text] [Related]
7. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. The transport of amino acids by membranes prepared from Escherichia coli. Lombardi FJ; Kaback HR J Biol Chem; 1972 Dec; 247(24):7844-57. PubMed ID: 4344983 [No Abstract] [Full Text] [Related]
8. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids. Konings WN; Barnes EM; Kaback HR J Biol Chem; 1971 Oct; 246(19):5857-61. PubMed ID: 4331061 [No Abstract] [Full Text] [Related]
9. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles. Lombardi FJ; Reeves JP; Short SA; Kaback HR Ann N Y Acad Sci; 1974 Feb; 227():312-27. PubMed ID: 4363926 [No Abstract] [Full Text] [Related]
10. Nucleoside transport in cells and membrane vesicles from Escherichia coli K12. Munch-Petersen A; Mygind B; Nicolaisen A; Pihl NJ J Biol Chem; 1979 May; 254(10):3730-7. PubMed ID: 374403 [TBL] [Abstract][Full Text] [Related]
11. Transport of succinate in Escherichia coli. III. Biochemical and genetic studies of the mechanism of transport in membrane vesicles. Lo TC; Rayman MK; Sanwal BD Can J Biochem; 1974 Oct; 52(10):854-66. PubMed ID: 4138960 [No Abstract] [Full Text] [Related]
12. Counterflow of galactosides in Escherichia coli. Wong PT; Wilson TH Biochim Biophys Acta; 1970; 196(2):336-50. PubMed ID: 4905619 [No Abstract] [Full Text] [Related]
13. The role of thiol groups in nucleoside transport. Doskocil J Mol Cell Biochem; 1976 Feb; 10(3):137-43. PubMed ID: 772419 [TBL] [Abstract][Full Text] [Related]
14. Transport of 2-keto-3-deoxy-D-gluconate in isolated membrane vesicles of Escherichia coli K12. Lagarde AE; Stoeber FR Eur J Biochem; 1974 Mar; 43(1):197-208. PubMed ID: 4601151 [No Abstract] [Full Text] [Related]
15. Membrane potential and active transport in membrane vesicles from Escherichia coli. Schuldiner S; Kaback HR Biochemistry; 1975 Dec; 14(25):5451-61. PubMed ID: 172125 [No Abstract] [Full Text] [Related]
16. Effects of colicin A and staphylococcin 1580 on amino acid uptake into membrane vesicles of Escherichia coli and staphylococcus aureus. Jetten AM; Vogels GD Biochim Biophys Acta; 1973 Jul; 311(4):483-95. PubMed ID: 4147116 [No Abstract] [Full Text] [Related]
18. Transport of succinate in Escherichia coli. I. Biochemical and genetic studies of transport in whole cells. Lo TC; Rayman MK; Sanwal BD J Biol Chem; 1972 Oct; 247(19):6323-31. PubMed ID: 4346810 [No Abstract] [Full Text] [Related]
19. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. Valinomycin-induced rubidium transport. Lombardi FJ; Reeves JP; Kaback HR J Biol Chem; 1973 May; 248(10):3551-65. PubMed ID: 4573982 [No Abstract] [Full Text] [Related]
20. Dehydrogenase activity involved in the uptake of glucose 6-phosphate by a bacterial membrane system. Dietz GW J Biol Chem; 1972 Jul; 247(14):4561-5. PubMed ID: 4557845 [No Abstract] [Full Text] [Related] [Next] [New Search]