These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 4354325)

  • 41. Evaluation of the rate-limiting steps in the pathway of glucose metabolism in kidney cortex of normal, diabetic, cortisone-treated and growth hormone-treated rats.
    Joseph PK; Subrahmanyam K
    Biochem J; 1972 Aug; 128(5):1293-301. PubMed ID: 4345356
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis.
    Diesterhaft MD; Freese E
    J Biol Chem; 1973 Sep; 248(17):6062-70. PubMed ID: 4146915
    [No Abstract]   [Full Text] [Related]  

  • 43. Regulation at the phosphoenolpyruvate branchpoint in Azotobacter vinelandii: pyruvate kinase.
    Liao CL; Atkinson DE
    J Bacteriol; 1971 Apr; 106(1):37-44. PubMed ID: 5551641
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Maximum activities and effects of fructose bisphosphate on pyruvate kinase from muscles of vertebrates and invertebrates in relation to the control of glycolysis.
    Zammit VA; Beis I; Newsholme EA
    Biochem J; 1978 Sep; 174(3):989-98. PubMed ID: 215127
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pyruvate carboxylation in the rat heart. Role of biotin-dependent enzymes.
    Sundqvist KE; Hiltunen JK; Hassinen IE
    Biochem J; 1989 Feb; 257(3):913-6. PubMed ID: 2930495
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nicotinamide-adenine dinucleotide-linked "malic" enzyme in flight muscle of the tse-tse fly (Glossina) and other insects.
    Hoek JB; Pearson DJ; Olembo NK
    Biochem J; 1976 Nov; 160(2):253-62. PubMed ID: 12751
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Limitations of commonly used spectrophotometric assay methods for phosphoenolypyruvate carboxykinase activity in crude extracts of muscle.
    Duff DA; Snell K
    Biochem J; 1982 Jul; 206(1):147-52. PubMed ID: 6289811
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The inhibition of skeletal-muscle fructose 1,6-diphosphatase by adenosine monophosphate.
    Opie LH; Newsholme EA
    Biochem J; 1967 Aug; 104(2):353-60. PubMed ID: 4292773
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biosynthetic capacity of hummingbird liver.
    Suarez RK; Brownsey RW; Vogl W; Brown GS; Hochachka PW
    Am J Physiol; 1988 Nov; 255(5 Pt 2):R699-702. PubMed ID: 2903681
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of calcium ions on the activites of hexokinase, phosphofructokinase and fructose 1,6-diphosphatase from vertebrate and insect muscles.
    Vaughan H; Newsholme EA
    Biochem J; 1969 Oct; 114(4):81P-82P. PubMed ID: 4310062
    [No Abstract]   [Full Text] [Related]  

  • 51. Intracellular localization of pyruvate carboxylase, phosphoenolpyruvate carboxykinase and "mallic enzyme" and the absence of glyoxylate cycle enzymes in the sea mussel (Mytilus edulis L.).
    de Zwaan A; van Marrewijk WJ
    Comp Biochem Physiol B; 1973 Apr; 44(4):1057-66. PubMed ID: 4714902
    [No Abstract]   [Full Text] [Related]  

  • 52. Activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates.
    Alp PR; Newsholme EA; Zammit VA
    Biochem J; 1976 Mar; 154(3):689-700. PubMed ID: 8036
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reye's syndrome: preservation of mitochondrial enzymes in brain and muscle compared with liver.
    Robinson BH; Taylor J; Cutz E; Gall DG
    Pediatr Res; 1978 Nov; 12(11):1045-7. PubMed ID: 214743
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of gluconeogenesis and lipogenesis. The regulation of mitochondrial pyruvate metabolism in guinea-pig liver synthesizing precursors for gluconeogenesis.
    Somberg EW; Mehlman MA
    Biochem J; 1969 May; 112(4):435-47. PubMed ID: 5801676
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Induction of phosphopyruvate carboxylase in neonatal rat liver by adenosine 3',5'-cyclic monophosphate.
    Yeung D; Oliver IT
    Biochemistry; 1968 Sep; 7(9):3231-9. PubMed ID: 4300922
    [No Abstract]   [Full Text] [Related]  

  • 56. THE EFFECTS OF ADENINE NUCLEOTIDES ON PYRUVATE METABOLISM IN RAT LIVER.
    BERRY MN
    Biochem J; 1965 Jun; 95(3):587-96. PubMed ID: 14342491
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of the TCA and glyoxylate cycles in Brevibacterium flavum. II. Regulation of phosphoenolpyruvate carboxylase and pyruvate kinase.
    Ozaki H; Shiio I
    J Biochem; 1969 Sep; 66(3):297-311. PubMed ID: 5348585
    [No Abstract]   [Full Text] [Related]  

  • 58. Effects of calcium ions and adenosine diphosphate on the activities of NAD+-linked isocitrate dehydrogenase from the radular muscles of the whelk and flight muscles of insects.
    Zammit VA; Newsholme EA
    Biochem J; 1976 Mar; 154(3):677-87. PubMed ID: 182126
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biotin carboxylases in mitochondria and the cytosol from skeletal and cardiac muscle as detected by avidin binding.
    Kirkeby S; Moe D; Bøg-Hansen TC; van Noorden CJ
    Histochemistry; 1993 Dec; 100(6):415-21. PubMed ID: 8163385
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Purification and properties of the pyruvate kinase of sturgeon muscle.
    Randall RF; Anderson PJ
    Biochem J; 1975 Mar; 145(3):569-73. PubMed ID: 239689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.