These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 4354944)

  • 21. Genetic transformation in Haemophilus influenzae: physical and biological properties of three DNA constructs carrying nov gene.
    Joshi VP; Notani NK
    Indian J Biochem Biophys; 1988 Dec; 25(6):523-7. PubMed ID: 3267145
    [No Abstract]   [Full Text] [Related]  

  • 22. FURTHER EVIDENCE OF A HIGH DEGREE OF GENETIC HOMOLOGY BETWEEN H. INFLUENZAE AND H. AEGYPTIUS.
    LEIDY G; JAFFEE I; ALEXANDER HE
    Proc Soc Exp Biol Med; 1965 Mar; 118():671-9. PubMed ID: 14264525
    [No Abstract]   [Full Text] [Related]  

  • 23. Recombination deficient mutants of E. coli and other bacteria.
    Clark AJ
    Annu Rev Genet; 1973; 7():67-86. PubMed ID: 4205905
    [No Abstract]   [Full Text] [Related]  

  • 24. Repair of ultraviolet-irradiated transforming deoxyribonucleic acid in Haemophilus influenzae.
    Beattie KL; Setlow JK
    J Bacteriol; 1970 Mar; 101(3):808-12. PubMed ID: 5309577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutations induced in Haemophilus influenzae by transformation with nitrosoguanidine-treated DNA.
    Kimball RF; Setlow JK
    Mutat Res; 1972 Feb; 14(2):137-46. PubMed ID: 4335556
    [No Abstract]   [Full Text] [Related]  

  • 26. Competence mutants: isolation of transformation deficient strains of Haemophilus influenzae.
    Caster JH; Postel EH; Goodgal SH
    Nature; 1970 Aug; 227(5257):515-7. PubMed ID: 5310646
    [No Abstract]   [Full Text] [Related]  

  • 27. Inhibition of transformation and transfection in Haemophilus influenzae Rd9 by lysogeny.
    Piekarowicz A; Siwińska M
    J Bacteriol; 1977 Jan; 129(1):22-9. PubMed ID: 299746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultraviolet sensitivity of Haemophilus influenzae transforming DNA. I. Effects of genetic mismatch and target size.
    Day RS; Rupert CS
    Mutat Res; 1971 Mar; 11(3):293-311. PubMed ID: 5314815
    [No Abstract]   [Full Text] [Related]  

  • 29. Biological properties of a Haemophilus influenzae restriction enzyme, Hind I.
    Gromkova R; Goodgal SH
    J Bacteriol; 1976 Aug; 127(2):848-54. PubMed ID: 1085299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultraviolet sensitivity of Haemophilus influenzae transforming DNA. II. A reextraction study of integration and repair.
    Day RS; Rupert CS
    Mutat Res; 1971 Mar; 11(3):313-26. PubMed ID: 5314816
    [No Abstract]   [Full Text] [Related]  

  • 31. [Halogenation of ribonucleic acids. VI. Influence of bromination on the transforming activity of Haemophilus influenzae DNA].
    Chevallier MR; Londos-Gagliardi D; Nicolaieff A; Aubel-Sadron G
    Bull Soc Chim Biol (Paris); 1968 Apr; 50(2):393-407. PubMed ID: 4297076
    [No Abstract]   [Full Text] [Related]  

  • 32. Fate of donor deoxyribonucleic acid in a highly transformation-deficient strain of Haemophilus influenzae.
    Kooistra J; Venema G
    J Bacteriol; 1974 Sep; 119(3):705-17. PubMed ID: 4546806
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of DNA replication and repair in mutagenesis of Haemophilus influenzae induced by N-nitrosocarbaryl.
    Beattie KL; Kimball RF
    Mutat Res; 1974 Aug; 24(2):105-15. PubMed ID: 4546840
    [No Abstract]   [Full Text] [Related]  

  • 34. A comparative study of transformable and nontransformable isolates derived from two strains of streptococci.
    Pakula R; Spencer LR; Anderson N; Goldstein PA
    Can J Microbiol; 1973 Feb; 19(2):207-16. PubMed ID: 4696780
    [No Abstract]   [Full Text] [Related]  

  • 35. Inhibition of transformation by antibodies against competent Haemophilus influenzae.
    Bingham DP; Barnhart BJ
    J Gen Microbiol; 1973 Apr; 75(2):249-58. PubMed ID: 4122435
    [No Abstract]   [Full Text] [Related]  

  • 36. Transfer of Haemophilus influenzae chromosomal genes by cell-to-cell contact.
    Albritton WL; Setlow JK; Slaney L
    J Bacteriol; 1982 Dec; 152(3):1066-70. PubMed ID: 6982895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adenosine triphosphate-dependent deoxyribonuclease from Diplococcus pneumoniae: fate of transforming deoxyribonucleic acid in a strain deficient in the enzymatic activity.
    Vovis GF
    J Bacteriol; 1973 Feb; 113(2):718-23. PubMed ID: 4144144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of deoxyribonuclease in genetic transformation. I. Deoxyribonuclease activity in variously transformable strains.
    Kohoutová M
    Folia Microbiol (Praha); 1967; 12(4):311-5. PubMed ID: 4383220
    [No Abstract]   [Full Text] [Related]  

  • 39. Genetic modifiers of the phenotypic level of deoxyribonucleic acid-conferred novobiocin resistance in Haemophilus.
    Leidy G; Jaffee I; Alexander HE
    J Bacteriol; 1966 Nov; 92(5):1464-8. PubMed ID: 5296977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Action of ATP-dependent DNase from Hemophilus influenzae on cross-linked DNA molecules.
    Orlosky M; Smith HO
    J Biol Chem; 1976 Oct; 251(19):6117-21. PubMed ID: 134999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.